

A report for BT

Economic Benefits of Digital Migration for Critical National Infrastructure Customers

25 September 2025

Sensitivity: Public

Contents

About

3. About

Key Findings

- 4. Net benefits of digital migration
- 5. The importance of moving early

Assumptions

- 6. Expected benefits
- 8. Network retirement estimates
- 9. Legacy device estimates
- 10. Timeline for network migration

Outputs

- 11. Economic benefits
- 15. Social and environmental benefits

Appendix

- 17. Concise methodology
- 19. Sources

About

About this study

BT asked Assembly for some economic modelling to illustrate the net benefits for digital migration (both fixed and mobile) for CNI customers, taking into account the costs of migration and the potential costs of inaction, particularly given rising fault rates on the PSTN.

About Assembly

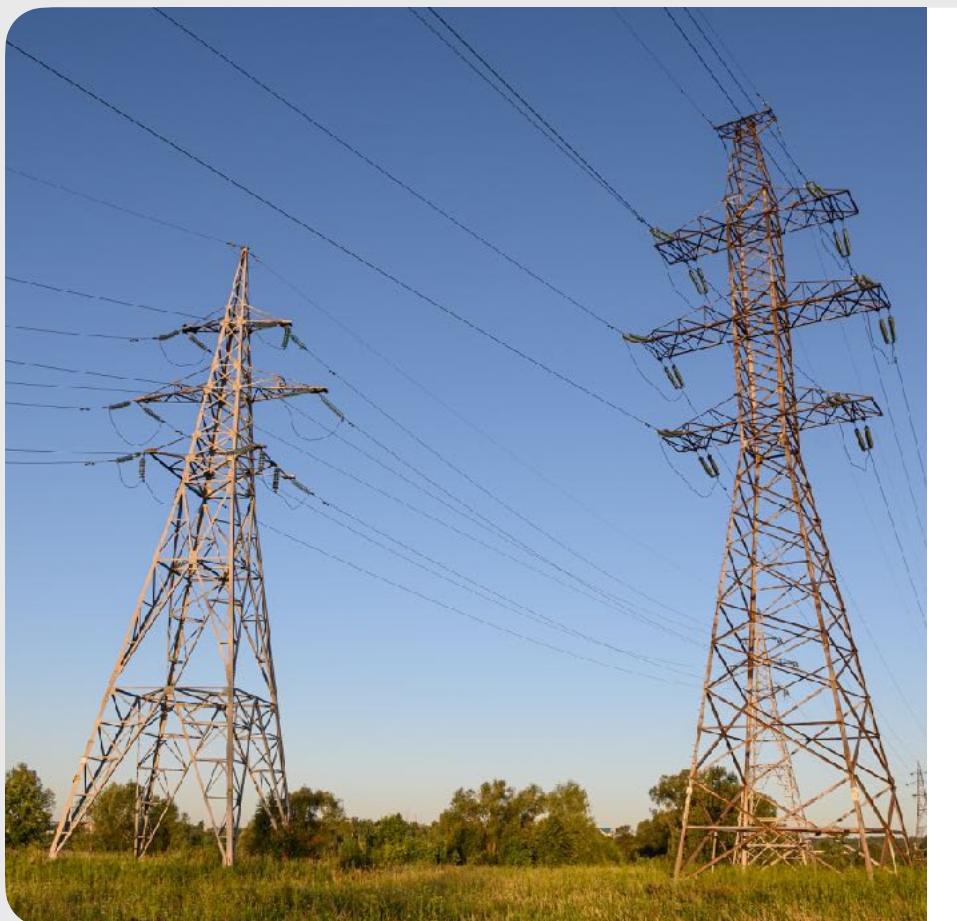
Founded in 2017, Assembly is an independent, London-based analyst firm providing custom and subscription-based research on regulatory, policy and legislative developments that affect communications markets and the wider digital economy.

For more information visit assemblyresearch.co.uk

Matthew Howett
Founder & CEO
+44 20 3026 2720
mh@assemblyresearch.co.uk

Grace Nelson
Analyst
+44 20 3026 2722
gn@assemblyresearch.co.uk

Bart Smallman
Research Analyst
+44 20 3026 2724
bs@assemblyresearch.co.uk



James Robinson
Senior Analyst
+44 20 3026 2721
jr@assemblyresearch.co.uk

Mark Foley
Associate Economist
+44 20 3026 2700
mf@assemblyresearch.co.uk

Net benefits of digital migration

Energy sector

£1.4bn

Water sector

£771m

Local government sector

Health sector (NHS)

£248m

Emergency services sector

£140m

£486m

The importance of moving early

Cost of inaction

£437m

Additional benefit of
migrating off the PSTN
by the end of 2025

£28.7m

Average length of time
to recover costs (years)

4.2

Emissions savings from
migration (Mt CO2e)

3.42

Prevent more than 1m
emergency call outs

1m

Expected benefits

Energy sector

Costs of inaction and economic benefits

Costs of inaction	
General	Rising resilience incidents on legacy networks → Firms that migrate legacy devices avoid the rising costs of service failures
Economic benefits	
Reducing maintenance and outages	Firms upgrade legacy sensing and monitoring devices → Firms are better able to predict and complete proactive maintenance, cutting costs and outage time due to network faults
Reducing avoidable generation	Firms upgrade legacy sensing and monitoring devices → Firms are better able to predict and respond to peaks in electricity demand, cutting unneeded generation at non-peak times

Water sector

Costs of inaction and economic benefits

Costs of inaction	
General	Rising resilience incidents on legacy networks → Firms that migrate legacy devices avoid the rising costs of service failures
Economic benefits	
Reduced electricity demand	Firms upgrade legacy sensing and monitoring devices → Firms are better able to optimise the operations of the water and wastewater system, cutting electricity demand

Health sector (NHS)

Costs of inaction and economic benefits

Costs of inaction	
General	Rising resilience incidents on legacy networks → Firms that migrate legacy devices avoid the rising costs of service failures
Cost of telecare faults	Rising number and length of resilience incidents on legacy networks → More telecare service faults occur, occupying staff time to ensure the safety of users → Users are less able to rely on their telecare services
Economic benefits	
Improved call volume management	NHS trusts upgrade their voice systems from analogue to VoIP → New technical features, including intelligent routing and queue management, increase the manageable number of calls per line
Upgraded telecare devices	NHS care homes adopt digital telecare → Higher data capacity allow for the transition to more proactive and preventative care → Users experience fewer emergency alerts and ambulance conveyances
Upgraded telecare devices (councils)	Local councils upgrade telecare devices → Users experience fewer ambulance conveyances → NHS trusts save the costs of these ambulance journeys

Expected benefits (Cont.)

Emergency services sector

Costs of inaction and economic benefits

Costs of inaction	
General	Rising resilience incidents on legacy networks → Firms that migrate legacy devices avoid the rising costs of service failures
Economic benefits	
Improved call volume management	Emergency services upgrade their voice systems from analogue to VoIP → New technical features, including intelligent routing and queue management, increase the manageable number of calls per line
Fewer false alarms (fire and rescue services)	Businesses upgrade their legacy fire and security alarms → Fewer false, automated alarms as a result of upgrade equipment and new technical features → Fire and rescue services save the cost of unnecessary call outs

Alarms sector

Costs of inaction and economic benefits

Costs of inaction	
General	Rising resilience incidents on legacy networks → Firms that migrate legacy devices avoid the rising costs of service failures
Economic benefits	
Fewer false alarms (businesses)	Businesses upgrade their legacy fire and security alarms → Fewer false, automated alarms as a result of upgrade equipment and new technical features → Businesses save the cost of productivity interruptions due to false alarms

Local government sector

Costs of inaction and economic benefits

Costs of inaction	
General	Rising resilience incidents on legacy networks → Firms that migrate legacy devices avoid the rising costs of service failures
Cost of telecare faults	Rising number and length of resilience incidents on legacy networks → More telecare service faults occur, occupying staff time to ensure the safety of users → Users are less able to rely on their telecare services
Economic benefits	
Cost of legacy parking meters (2G/3G)	Retaining legacy parking meters leave councils susceptible to high maintenance costs and theft → Councils that migrate save associated costs
Economic benefits	
Improved call volume management	Local councils upgrade their voice systems from analogue to VoIP → New technical features, including intelligent routing and queue management, increase the manageable number of calls per line
Upgraded telecare devices	Local council telecare offerings are upgraded to digital connectivity → Higher data capacity allow for the transition to more proactive and preventative care → Users experience fewer emergency alerts, saving council staff time

Fixed line and mobile SIM retirement estimates

Table 1:

The table below outlines the underlying assumptions of how many commercial PSTN lines and 2G/3G SIMs are in use as of the beginning of our benchmarking. These figures are informed by data provided by BT and by publicly available information from operators and the UK Government on legacy network migration plans.

	2025	2026	2027	2028	2029	2030	2031	2032	2033
PSTN lines	Baseline migration scenario ¹	883,122	504,641	0	0	0	0	0	0
	Accelerated migration scenario ²	883,122	0	0	0	0	0	0	0
2G SIMs	–	9,503,952	6,566,594	3,629,237	2,851,113	2,072,990	1,294,867	863,245	431,622
3G SIMs	–	356,184	0	0	0	0	0	0	0

Notes:

1. The baseline PSTN migration scenario refers to retirement by January 2027.
2. The accelerated PSTN migration scenario refers to retirement by December 2025.

Legacy device estimates

Table 2:

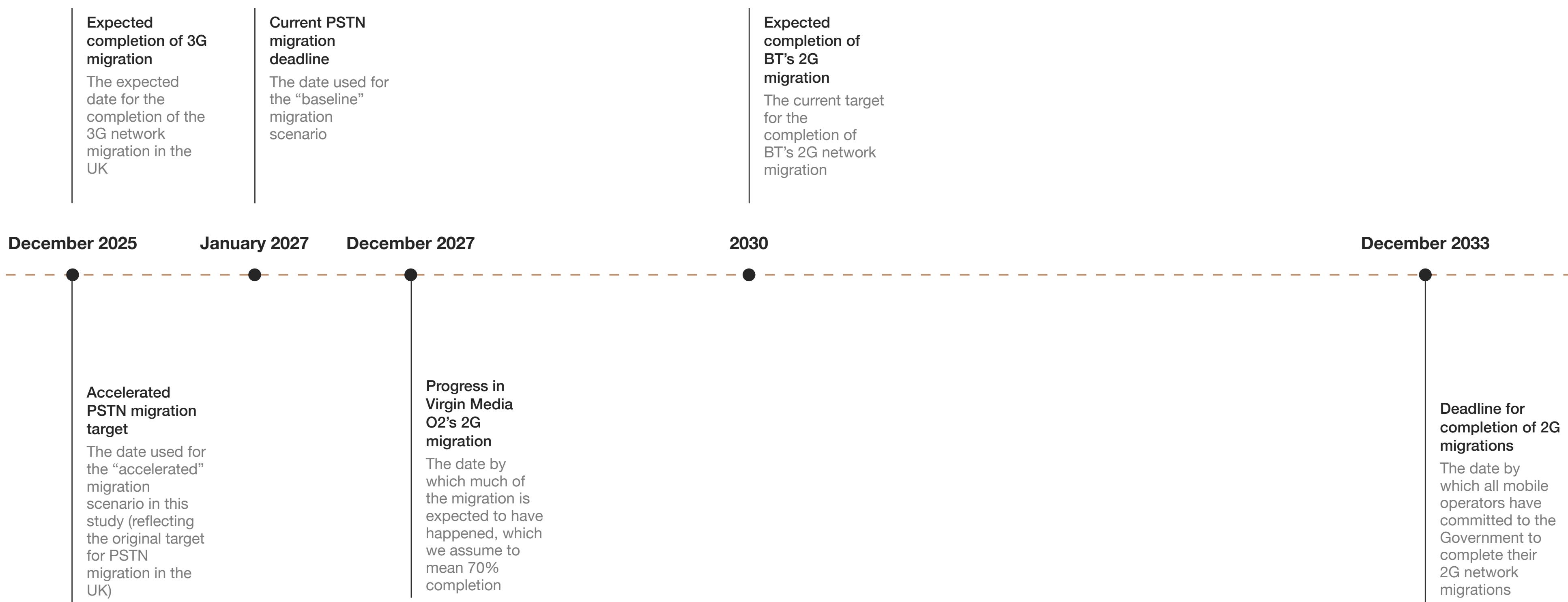
The below tables provide estimates on the number of types of devices still connected to the PSTN and 2G/3G networks, and yet to be migrated, as of the beginning of our benchmarking. We project these devices to be retired following the same patterns as the general lines and SIMs detailed in Table 1.

Energy sector		
	PSTN	2G/3G
Gas and electricity supply monitors	1,519	
Phone lines ¹	7,661	
Fire and security alarms ²	1,772	
Lift alarms	124	
		33,417
Energy grid monitors		Smart meters
		7,000,000
Vehicle telemetry devices		22,202
Fire and security alarms		9,352
Lift alarms		13

Water sector		
	PSTN	2G/3G
Water and flood monitoring devices	883	
Phone lines	9,916	
Fire and security alarms	2,085	
Lift alarms	146	
		2,515
Event duration monitors		Sewer pumping stations
		6,533
Vehicle telemetry devices		16,266
Fire and security alarms		11,002
Lift alarms		16

Health sector (NHS)		
	PSTN	2G/3G
Telecare devices (group) ³	564	
Phone lines	18,486	
Fire and security alarms	3,649	
Lift alarms	255	
		Telecare devices (group)
		269
Fire and security alarms		19,259
Lift alarms		13

Emergency services sector		
	PSTN	2G/3G
Phone lines	13,665	
Fire and security alarms	2,638	
Lift alarms	185	
		Fire and security alarms
Fire and security alarms		13,921
Lift alarms		20


Alarms sector ⁴		
	PSTN	2G/3G
Fire and security alarms	124,887	
Lift alarms	278,851	
		Fire and security alarms
Fire and security alarms		629,066
Lift alarms		29,877

Local government sector		
	PSTN	2G/3G
Telecare devices (group)	7,335	
Telecare devices (dispersed) ⁵	183,365	
Phone lines	30,277	
Fire and security alarms	6,268	
Lift alarms	439	
		Telecare devices (group)
		3,493
Telecare devices (dispersed) ⁵	232,844	
Parking meters	11,400	
Fire and security alarms	33,080	
Lift alarms	47	

Notes:

1. We assume phone lines make up the majority of PSTN lines in the sector.
2. Fire and security systems also include CCTV systems.
3. Group telecare alarms are assumed to be connected to commercial lines or SIMs and count each hard-wired system as a single device, even if it serves multiple users with other connected devices.
4. Device figures for the alarms sector are not inclusive of fire and security alarms and lift alarms counted in the other sectors studied.
5. Dispersed telecare devices are assumed to be connected to consumer lines or SIMs and are counted as a single device.

Timeline for network migration

Sectoral benefits of digital migration

Table 3:

The below table details the expected combined economic impact of PSTN migration and 2G/3G migration on the studied sectors. The baseline PSTN retirement scenario is shown and incorporated into sectoral totals.

	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040
Energy sector¹	(£4.4m)	(£73.3m)	(£95.7m)	(£46.5m)	(£12.6m)	£83.2m	£171.4m	£269.6m	£378.4m	£500.6m	£629.2m	£764m	£905.2m	£1.1bn	£1.2bn	£1.4bn
Costs of migration ²	(£4.8m)	(£101.3m)	(£84m)	(£21.4m)	(£21.4m)	(£21.4m)	(£11.7m)	(£11.7m)	(£11.7m)	£344,723	£344,723	£344,723	£344,723	£344,723	£344,723	£344,723
Costs of inaction	£23,145	£1.5m	£2.6m	£2.9m	£3.2m	£3.5m	£3.7m	£3.9m	£4m	–	–	–	–	–	–	–
Economic benefits	£408,983	£31m	£59m	£67.7m	£77.2m	£88.4m	£96.2m	£106m	£116.5m	£121.9m	£128.2m	£134.5m	£140.1m	£147.1m	£151.4m	£156.5m
Water sector	(£2.2m)	(£7.2m)	£7.5m	£38.1m	£73.4m	£114.5m	£161.3m	£213.4m	£271.2m	£332m	£396.5m	£464.6m	£536.5m	£612m	£690.1m	£771.2m
Costs of migrations	(£2.7m)	(£20.6m)	(£14.7m)	(£3.2m)	(£3.2m)	(£1.6m)	(£1.6m)	(£1.6m)	(£1.6m)	£446,211	£446,211	£446,211	£446,211	£446,211	£446,211	£446,211
Costs of inaction	£27,228	£878,237	£1.4m	£1.6m	£1.8m	£2m	£2.1m	£2.2m	£2.3m	–	–	–	–	–	–	–
Economic benefits	£383,374	£14.8m	£28m	£32.2m	£36.8m	£42.3m	£46.3m	£51.5m	£57.1m	£60.3m	£64m	£67.7m	£71.4m	£75.1m	£77.6m	£80.6m
Health sector (NHS)	(£8.1m)	(£33.6m)	(£34.6)	(£17.4m)	£568,909	£19.4m	£40.8m	£62.6m	£84.9m	£108.2m	£131.5m	£154.9m	£178.2m	£201.5m	£224.8m	£248.2m
Costs of migrations	(£9.6m)	(£37.7m)	(£20.8m)	(£3.6m)	(£3.6m)	(£1.6m)	(£1.6m)	(£1.6m)	(£1.6m)	£830,275	£830,275	£830,275	£830,275	£830,275	£830,275	£830,275
Costs of inaction ³	£51,398	£716,954	£917,133	£1m	£1.1m	£1.3m	£1.3m	£1.4m	£1.4m	£1.5m	–	–	–	–	–	–
Economic benefits ⁴	£1.4m	£11.5m	£19m	£19.7m	£20.5m	£21.2m	£21.7m	£22.1m	£22.5m	£22.5m	£22.5m	£22.5m	£22.5m	£22.5m	£22.5m	£22.5m
Emergency services sector	(£2.3m)	(£12.8m)	(£13.7m)	(£5m)	£4.3m	£14.2m	£25.7m	£37.6m	£49.8m	£62.7m	£75.6m	£88.4m	£101.3m	£114.2m	£127.1m	£139.9m
Cost of migrations	(£3m)	(£16.5m)	(£11m)	(£2.1m)	(£2.1m)	(£2.1m)	(£887,057)	(£887,057)	(£887,057)	£614,908	£614,908	£614,908	£614,908	£614,908	£614,908	£614,908
Costs of inaction	£10,574	£329,537	£547,833	£616,248	£684,662	£753,076	£791,025	£828,974	£866,923	–	–	–	–	–	–	–
Economic benefits ⁵	£688,907	£5.7m	£9.5m	£10.1m	£10.7m	£11.3m	£11.6m	£11.9m	£12.3m	£12.3m	£12.3m	£12.3m	£12.3m	£12.3m	£12.3m	£12.3m
Alarms sector	(£337.5m)	(£1.5bn)	(£2.1bn)	(£2.2bn)	(£2.2bn)	(£2.2bn)	(£2.2bn)	(£2.2bn)	(£2.2bn)	(£2.1bn)	(£2.1bn)	(£2bn)	(£1.9bn)	(£1.9bn)	(£1.8bn)	(£1.8bn)
Cost of migrations	(£338.7m)	(£1.2bn)	(£652.8m)	(£128m)	(£128m)	(£128m)	(£71m)	(£71m)	(£71m)	–	–	–	–	–	–	–
Costs of inaction	£210,927	£14.6m	£25.9m	£29.1m	£32.3m	£35.6m	£37.4m	£39.2m	£41m	–	–	–	–	–	–	–
Economic benefits	£1m	£22.9m	£41.1m	£45m	£49m	£52.9m	£55m	£57.2m	£59.4m	£59.4m	£59.4m	£59.4m	£59.4m	£59.4m	£59.4m	£59.4m
Local government sector	(£54.8m)	(£212.8m)	(£245.8m)	(£187.8m)	(£123.4m)	(£52.5m)	£31.5m	£119.7m	£212.1m	£251.3m	£290.5m	£329.7m	£368.9m	£408.1m	£447.3m	£486.6m
Cost of migrations	(£58m)	(£199.8m)	(£103m)	(£18.6m)	(£18.6m)	(£9.7m)	(£9.7m)	(£9.7m)	(£9.7m)	£1.4m						
Costs of inaction	£399,321	£21m	£36.5m	£42.1m	£47.6m	£53.2m	£56.9m	£60.6m	£64.2m	–	–	–	–	–	–	–
Economic benefits	£2.8m	£20.7m	£33.5m	£34.4m	£35.4m	£36.3m	£36.8m	£37.3m	£37.8m	£37.8m	£37.8m	£37.8m	£37.8m	£37.8m	£37.8m	£37.8m

Notes:

1. Sectoral totals are inclusive of all costs and benefits to date, representative of the point at which migration yields a positive benefit.
2. Savings from migrating voice services from analogue to VoIP are reflected in the cost estimates of the migration for each sector, resulting in some positive yields in later years of modelling.
3. The cost of inaction for the health and local government sector is inclusive of the cost of telecare device failure to both users and staff monitoring devices.
4. The economic benefit to the NHS is reflective of the cost savings of reducing ambulance conveyances with the migration of local government-provided telecare devices to digital.
5. The economic benefit to the emergency services sector is reflective of the cost savings of reducing false alarms to fire and rescue services.

Economic impact of PSTN migration (baseline)

Table 4:

The below table details the expected economic impact of the PSTN migration on the studied sectors according to the baseline migration scenario (completed by January 2027). The table and total impact figure is inclusive of the expected costs of the migration, the costs of inaction for firms that delay migration and the economic benefit of moving to all-IP or other advanced digital connectivity.

	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040
Energy sector¹	(£4.4m)	(£11.3m)	(£9.4m)	(£5m)	(£434,211)	£4.3m	£9.2m	£14.4m	£19.8m	£25.4m	£31.3m	£37.5m	£44m	£50.7m	£57.7m	£64.8m
Costs of migration ²	(£4.8m)	(£9.5m)	(£2.1m)	£344,723	£344,723	£344,723	£344,723	£344,723	£344,723	£344,723	£344,723	£344,723	£344,723	£344,723	£344,723	£344,723
Costs of inaction	£23,145	£104,551	–	–	–	–	–	–	–	–	–	–	–	–	–	–
Benefit of reduced maintenance and outages	£90,183	£541,100	£841,713	£841,713	£841,713	£841,713	£841,713	£841,713	£841,713	£841,713	£841,713	£841,713	£841,713	£841,713	£841,713	£841,713
Benefit of reducing avoidable generation	£318,799	£2m	£3.1m	£3.2m	£3.4m	£3.6m	£3.7m	£4m	£4.2m	£4.5m	£4.7m	£5m	£5.3m	£5.6m	£5.7m	£6m
Water sector	(£2.2m)	(£5m)	(£2m)	£2.3m	£6.8m	£11.5m	£16.4m	£21.6m	£27.2m	£33m	£39.1m	£45.6m	£52.4m	£59.5m	£66.8m	£74.5m
Costs of migrations	(£2.7m)	(£5.1m)	(£904,993)	£446,211	£446,211	£446,211	£446,211	£446,211	£446,211	£446,211	£446,211	£446,211	£446,211	£446,211	£446,211	£446,211
Costs of inaction	£27,228	£122,996	–	–	–	–	–	–	–	–	–	–	–	–	–	–
Benefit of reduced electricity demand	£383,374	£2.3m	£3.7m	£3.9m	£4m	£4.3m	£4.5m	£4.8m	£5.1m	£5.4m	£5.7m	£6m	£6.4m	£6.7m	£6.9m	£7.2m
Health sector (NHS)	(£8.1m)	(£18.4m)	(£9.5m)	£4.2m	£18m	£31.7m	£45.4m	£59.2m	£72.9m	£86.6m	£100.4m	£114.1m	£127.8m	£141.6m	£155.3m	£169m
Costs of migrations	(£9.6m)	(£18.8m)	(£4m)	£830,275	£830,275	£830,275	£830,275	£830,275	£830,275	£830,275	£830,275	£830,275	£830,275	£830,275	£830,275	£830,275
Costs of inaction ³	£51,398	£232,177	–	–	–	–	–	–	–	–	–	–	–	–	–	–
Benefit of improved call management	£60,494	£362,963	£564,609	£564,609	£564,609	£564,609	£564,609	£564,609	£564,609	£564,609	£564,609	£564,609	£564,609	£564,609	£564,609	£564,609
Benefit of advanced telecare	£117,425	£704,577	£1.1m	£1.1m	£1.1m	£1.1m	£1.1m	£1.1m	£1.1m	£1.1m	£1.1m	£1.1m	£1.1m	£1.1m	£1.1m	£1.1m
Benefit of reduced ambulance conveyances ⁴	£1.2m	£7.2m	£11.2m	£11.2m	£11.2m	£11.2m	£11.2m	£11.2m	£11.2m	£11.2m	£11.2m	£11.2m	£11.2m	£11.2m	£11.2m	£11.2m
Emergency services sector	(£2.3m)	(£4.1m)	£57,538	£5.6m	£11.1m0	£16.6m	£22.2m	£27.7m	£33.2m	£38.8m	£44.3m	£49.8m	£55.3m	£60.8m	£66.4m	£71.9m
Cost of migrations	(£3m)	(£5.1m)	(£754,298)	£614,908	£614,908	£614,908	£614,908	£614,908	£614,908	£614,908	£614,908	£614,908	£614,908	£614,908	£614,908	£614,908
Costs of inaction	£10,574	£39,963	–	–	–	–	–	–	–	–	–	–	–	–	–	–
Benefit of improved call management	£533,525	£2.4m	£3.4m	£3.5m	£3.5m	£3.5m	£3.5m	£3.5m	£3.5m	£3.5m	£3.5m	£3.5m	£3.5m	£3.5m	£3.5m	£3.5m
Benefit of reduced false alarms ⁵	£155,382	£932,293	£1.5m	£1.5m	£1.5m	£1.5m	£1.5m	£1.5m	£1.5m	£1.5m	£1.5m	£1.5m	£1.5m	£1.5m	£1.5m	£1.5m
Alarms sector	(£337.4m)	(£1bn)	(£1.2bn)	(£1.2bn)	(£1.1bn)	(£1.1bn)	(£1.1bn)	(£1.1bn)	(£1.1bn)	(£1.1bn)	(£1.1bn)	(£1.1bn)	(£1.1bn)	(£1.1bn)	(£1.1bn)	(£1.1bn)
Cost of migrations	(£338.7m)	(£677.5m)	(£169.4m)	–	–	–	–	–	–	–	–	–	–	–	–	–
Costs of inaction	£210,927	£952,801	–	–	–	–	–	–	–	–	–	–	–	–	–	–
Benefit of reduced false alarms	£1m	£6.3m	£9.8m	£9.8m	£9.8m	£9.8m	£9.8m	£9.8m	£9.8m	£9.8m	£9.8m	£9.8m	£9.8m	£9.8m	£9.8m	£9.8m
Local government sector	(£54.8m)	(£151.5m)	(£153.1m)	(£125.7m)	(£98.2m)	(£70.8m)	(£43.3m)	(£15.9m)	(£11.6m)	(£39m)	(£66.5m)	(£93.9m)	(£121.4m)	(£148.9m)	(£176.3m)	(£203.8m)
Cost of migrations	(£58m)	(£115.3m)	(£27.7m)	£1.4m	£1.4m	£1.4m	£1.4m	£1.4m	£1.4m	£1.4m	£1.4m	£1.4m	£1.4m	£1.4m	£1.4m	£1.4m
Costs of inaction	£399,321	£1.8m	–	–	–	–	–	–	–	–	–	–	–	–	–	–
Benefit of improved call management	£1.2m	£7.4m	£11.6m	£11.6m	£11.6m	£11.6m	£11.6m	£11.6m	£11.6m	£11.6m	£11.6m	£11.6m	£11.6m	£11.6m	£11.6m	£11.6m
Benefit of advanced telecare	£1.6m	£9.3m	£14.5m	£14.5m	£14.5m	£14.5m	£14.5m	£14.5m	£14.5m	£14.5m	£14.5m	£14.5m	£14.5m	£14.5m	£14.5m	£14.5m

Notes:

1. Sectoral totals are inclusive of all costs and benefits to date, representative of the point at which migration yields a positive benefit.
2. Savings from migrating voice services from analogue to VoIP are reflected in the cost estimates of the migration for each sector, resulting in some positive yields in later years of modelling.
3. The cost of inaction for the health and local government sector is inclusive of the cost of telecare device failure to both users and staff monitoring devices.
4. This economic benefit to the NHS is reflective of the cost savings of reducing ambulance conveyances with the migration of local government-provided telecare devices to digital.
5. This economic benefit to the emergency services sector is reflective of the cost savings of reducing false alarms to fire and rescue services.

Economic impact of PSTN migration (accelerated)

Table 5:

The below table details the expected economic impact of the PSTN migration on the studied sectors according to the accelerated migration scenario (completed by December 2025). The table and total impact figure is inclusive of the expected costs of the migration, the costs of inaction for firms that delay migration and the economic benefit of moving to all-IP or other advanced digital connectivity.

	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040
Energy sector¹	£10.2m	£11.5m	£7.2m	£2.8m	£1.7m	£6.5m	£11.4m	£16.5m	£21.9m	£27.6m	£33.5m	£39.7m	£46.2m	£52.9m	£59.8m	£67m
Costs of migration ²	£11.2m	£5.3m	£344,723	£344,723	£344,723	£344,723	£344,723	£344,723	£344,723	£344,723	£344,723	£344,723	£344,723	£344,723	£344,723	£344,723
Costs of inaction	£54,006	£131,899	–	–	–	–	–	–	–	–	–	–	–	–	–	–
Benefit of reduced maintenance and outages	£210,428	£841,713	£841,713	£841,713	£841,713	£841,713	£841,713	£841,713	£841,713	£841,713	£841,713	£841,713	£841,713	£841,713	£841,713	£841,713
Benefit of reducing avoidable generation	£743,861	£3m	£3.1m	£3.2m	£3.4m	£3.6m	£3.7m	£4m	£4.2m	£4.5m	£4.7m	£5m	£5.3m	£5.6m	£5.7m	£6m
Water sector	£5.2m	£4.2m	£56,700	£4.4m	£8.9m	£13.6m	£18.5m	£23.7m	£29.3m	£35.1m	£41.2m	£47.7m	£54.5m	£61.6m	£69m	£76.6m
Costs of migrations	£6.2m	£2.7m	£446,212	£446,212	£446,212	£446,212	£446,212	£446,212	£446,212	£446,212	£446,212	£446,212	£446,212	£446,212	£446,212	£446,212
Costs of inaction	£63,533	£155,169	–	–	–	–	–	–	–	–	–	–	–	–	–	–
Benefit of reduced electricity demand	£894,540	£3.6m	£3.7m	£3.9m	£4m	£4.3m	£4.5m	£4.8m	£5.1m	£5.4m	£5.7m	£6m	£6.4m	£6.7m	£6.9m	£7.2m
Health sector (NHS)	£19m	£16.3m	£2.5m	£11.2m	£25m	£38.7m	£52.4m	£66m	£79.9m	£93.6m	£107.4m	£121.1m	£134.8m	£148.6m	£162.3m	£176m
Costs of migrations	£22.3m	£10.4m	£830,276	£830,276	£830,276	£830,276	£830,276	£830,276	£830,276	£830,276	£830,276	£830,276	£830,276	£830,276	£830,276	£830,276
Costs of inaction ³	£119,930	£292,907	–	–	–	–	–	–	–	–	–	–	–	–	–	–
Benefit of improved call management	£141,152	£564,609	£564,609	£564,609	£564,609	£564,609	£564,609	£564,609	£564,609	£564,609	£564,609	£564,609	£564,609	£564,609	£564,609	£564,609
Benefit of advanced telecare	£274,004	£1.1m														
Benefit of reduced ambulance conveyances ⁴	£2.8m	£11.2m														
Emergency services sector	£5.3m	£3m	£2.5m	£8m	£13.6m	£19.1m	£24.6m	£30.2m	£35.7m	£41.2m	£46.7m	£52.3	£57.8m	£63.3m	£68.8m	£74.4m
Cost of migrations	£6.5m	£2.7m	£614,908	£614,908	£614,908	£614,908	£614,908	£614,908	£614,908	£614,908	£614,908	£614,908	£614,908	£614,908	£614,908	£614,908
Costs of inaction	£20,098	£49,086	–	–	–	–	–	–	–	–	–	–	–	–	–	–
Benefit of improved call management	£853,640	£3.5m														
Benefit of reduced false alarms ⁵	£362,559	£1.5m														
Alarms sector	£787.4m	£1.2bn	£1.2bn	£1.2bn	£1.1bn											
Cost of migrations	£790.4m	£395.2m	–	–	–	–	–	–	–	–	–	–	–	–	–	–
Costs of inaction	£492,164	£1.2m	–	–	–	–	–	–	–	–	–	–	–	–	–	–
Benefit of reduced false alarms	£2.4m	£9.8m														
Local government sector	£127.8m	£165.9m	£138.4m	£111m	£83.5m	£56m	£28.6m	£1.1m	£26.3m	£53.8m	£81.2m	£108.7m	£136.1m	£163.6m	£191m	£218.5m
Cost of migrations	£135.2m	£66.4m	£1.4m													
Costs of inaction	£931,749	£2.3m	–	–	–	–	–	–	–	–	–	–	–	–	–	–
Benefit of improved call management	£2.9m	£11.6m														
Benefit of advanced telecare	£3.6m	£14.5m														

Notes:

1. Sectoral totals are inclusive of all costs and benefits to date, representative of the point at which migration yields a positive benefit.
2. Savings from migrating voice services from analogue to VoIP are reflected in the cost estimates of the migration for each sector, resulting in some positive yields in later years of modelling.
3. The cost of inaction for the health and local government sector is inclusive of the cost of telecare device failure to both users and staff monitoring devices.
4. This economic benefit to the NHS is reflective of the cost savings of reducing ambulance conveyances with the migration of local government-provided telecare devices to digital.
5. This economic benefit to the emergency services sector is reflective of the cost savings of reducing false alarms to fire and rescue services.

Economic impact of 2G/3G migration

Table 6:

The below table details the expected economic impact of the 2G and 3G network migrations on the studied sectors. The table and total impact figure is inclusive of the expected costs of the migration, the costs of inaction for firms that delay migration and the economic benefit of moving to all-IP or other advanced digital connectivity.

	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040
Energy sector¹	–	(£62m)	(£86.3m)	(£41.5m)	£13.1m	£78.9m	£162.2m	£255.2m	£358.6m	£457.2m	£597.8m	£726.4m	£861.2m	£1bn	£1.1bn	£1.3bn
Costs of migration	–	(£91.8m)	(£81.9m)	(£21.7m)	(£21.7m)	(£21.7m)	(£12m)	(£12m)	(£12m)	–	–	–	–	–	–	–
Costs of inaction	–	£1.3m	£2.6m	£2.9m	£3.2m	£3.5m	£3.7m	£3.9m	£4m	–	–	–	–	–	–	–
Benefit of reduced maintenance and outages	–	£6.2m	£11.7m	£13.2m	£14.6m	£16.1m	£16.9m	£17.7m	£18.5m	£18.5m	£18.5m	£18.5m	£18.5m	£18.5m	£18.5m	£18.5m
Benefit of reducing avoidable generation	–	£22.3m	£43.3m	£50.5m	£58.4m	£68m	£74.8m	£83.4m	£92.9m	£98.1m	£101.4m	£110.1m	£116.2m	£122.2m	£126.3m	£131.1m
Water sector	–	(£2.3m)	£9.6m	£35.8m	£66.6m	£103m	£144.9m	£191.8m	£224m	£299m	£357.3m	£419m	£484.1m	£552.5m	£623.3m	£696.7m
Costs of migrations	–	(15.5m)	(£13.8m)	(£3.7m)	(£3.7m)	(£2m)	(£2m)	(£2m)	(£2m)	–	–	–	–	–	–	–
Costs of inaction	–	£755,241	£1.4m	£1.6m	£1.8m	£2m	£2.1m	£2.2m	£2.3m	–	–	–	–	–	–	–
Benefit of reduced electricity demand	–	£12.5m	£24.3m	£28.3m	£32.7m	£38.1m	£41.7m	£46.7m	£52m	£55m	£58.4m	£61.7m	£65.1m	£68.4m	£70.7m	£73.5m
Health sector (NHS)	–	(£15.2m)	(£25m)	(£21.6m)	(£17.4m)	(£12.3m)	(£4.6m)	£3.4m	£12m	£21.6m	£31.2m	£40.8m	£50.4m	£60m	£69.5m	£79m
Costs of migrations	–	(£18.9m)	(£16.8m)	(£4.5m)	(£4.5m)	(£2.5m)	(£2.5m)	(£2.5m)	(£2.5m)	–	–	–	–	–	–	–
Costs of inaction ²	–	£484,777	£917,133	£1m	£1.1m	£1.3m	£1.4m	£1.5m	–	–	–	–	–	–	–	–
Benefit of advanced telecare	–	£164,075	£310,415	£349,176	£387,955	£426,716	£448,217	£469,718	£491,219	£491,219	£491,219	£491,219	£491,219	£491,219	£491,219	£491,219
Benefit of reduced ambulance conveyances ³	–	£3.1m	£5.8m	£6.5m	£7.2m	£7.9m	£8.3m	£8.7m	£9.1m	£9.1m	£9.1m	£9.1m	£9.1m	£9.1m	£9.1m	£9.1m
Emergency services sector	–	(£8.7m)	(£13.6m)	(£10.6m)	(£6.9m)	(£2.4m)	£3.6m	£9.9m	£16.6m	£24m	£31.3m	£38.7m	£46m	£53.3m	£60.7m	£68m
Cost of migrations	–	(£11.5m)	(£10.2m)	(£2.7m)	(£2.7m)	(£2.7m)	(£1.5m)	(£1.5m)	(£1.5m)	–	–	–	–	–	–	–
Costs of inaction	–	£289,574	£547,833	£616,248	£684,662	£753,077	£791,025	£828,975	£866,924	–	–	–	–	–	–	–
Benefit of reduced false alarms ⁴	–	£2.5m	£4.6m	£5.2m	£5.8m	£6.4m	£6.7m	£7m	£7.3m	£7.3m	£7.3m	£7.3m	£7.3m	£7.3m	£7.3m	£7.3m
Alarms sector	–	(£511.7m)	(£939.7)	(£1bn)	(£1.1bn)	(£1.1bn)	(£1.1bn)	(£1.1bn)	(£1.1bn)	(£1bn)	(£961.7m)	(£912.1m)	(£862.5m)	(£812.9m)	(£763.3m)	(£713.7m)
Cost of migrations	–	(£542m)	(£483.4m)	(£128m)	(£128m)	(£128m)	(£71m)	(£71m)	(£71m)	–	–	–	–	–	–	–
Costs of inaction	–	£13.7m	£25.9m	£29.1m	£32.3m	£35.6m	£37.4m	£39.2m	£41m	–	–	–	–	–	–	–
Benefit of reduced false alarms	–	£16.6m	£31.3m	£35.3m	£39.2m	£43.1m	£45.3m	£47.4m	£49.6m	£49.6m	£49.6m	£49.6m	£49.6m	£49.6m	£49.6m	£49.6m
Local government sector	–	(£61.3m)	(£92.6m)	(£62.2m)	(£25.2m)	£18.3m	£74.8m	£135.6m	£200.5m	£212.3m	£224m	£235.8m	£247.5m	£259.3m	£271	£282.8m
Cost of migrations	–	(£84.4m)	(£75.3m)	(£19.9m)	(£19.9m)	(£11.1m)	(£11.1m)	(£11.1m)	(£11.1m)	–	–	–	–	–	–	–
Costs of inaction ⁵	–	£19.2m	£36.5m	£42.1m	£47.6m	£53.2m	£56.9m	£60.6m	£64.2m	–	–	–	–	–	–	–
Benefit of advanced telecare	–	£3.9m	£7.4m	£8.4m	£9.3m	£10.2m	£10.7m	£11.2m	£11.8m	£11.8m	£11.8m	£11.8m	£11.8m	£11.8m	£11.8m	£11.8m

Notes:

1. Sectoral totals are inclusive of all costs and benefits to date, representative of the point at which migration yields a positive benefit.
2. The cost of inaction for the health sector is inclusive of the cost of telecare device failure to both users and staff monitoring devices.
3. This economic benefit to the NHS is reflective of the cost savings of reducing ambulance conveyances with the migration of local government-provided telecare devices to digital.
4. This economic benefit to the emergency services sector is reflective of the cost savings of reducing false alarms to fire and rescue services.
5. The cost of inaction for the local government sector is inclusive of the cost of telecare device failure to both users and staff monitoring devices as well as the maintenance and theft-related costs of retaining legacy parking meters.

Social and environmental benefits

Table 7:

The below table details the social and environmental benefits of legacy network migration for the sectors studied. The relevant unit for each benefit is specified in the row.

	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	Total
Energy sector	Emissions saved (Mt CO ₂ e)	0.0005	0.0382	0.0732	0.0846	0.0973	0.1126	0.1236	0.1377	0.1530	0.1615	0.1714	0.1813	0.1914	0.2012	0.2080	0.2160 2.1516
Water sector	Emissions saved (Mt CO ₂ e)	0.0006	0.0234	0.0441	0.0507	0.0579	0.0667	0.0730	0.0811	0.0900	0.0950	0.1009	0.1066	0.1125	0.1183	0.1223	0.1270 1.2701
Health sector (NHS)	Staff hours saved (hours) ¹	3,987	25,882	40,919	41,381	41,843	42,306	42,562	42,818	43,075	43,075	43,075	43,075	43,075	43,075	43,075	626,297
	Ambulance conveyances saved (trips) ²	3,197	27,102	44,822	46,693	48,564	50,435	51,472	52,510	53,548	53,548	53,548	53,548	53,548	53,548	53,548	753,179
Local government sector	Staff hours saved (hours) ³	61,593	451,529	729,945	749,311	768,677	788,043	798,785	809,528	820,270	820,270	820,270	820,270	820,270	820,270	820,270	11,719,569

Notes:

1. Staff hours saved by the health sector has also been converted into an economic value and reported as an economic benefit.
2. Ambulance conveyances has also been converted into an economic value, based on the cost of an ambulance journey to the NHS, and reported as an economic benefit.
3. Staff hours saved by the local government sector has also been converted into an economic value and reported as an economic benefit.

Appendix

Concise methodology

General

- All calculations are based on projections of remaining PSTN lines and 2G/3G SIMs. This modelling does not account for economic impact relating to lines or SIMs that have already been migrated off these legacy networks.
- All projections for the PSTN migration begin in Q2 2025, based on the most recent available data provided by BT on remaining commercial PSTN lines. All projections for 2G and 3G migration begin in 2025.

Line migration: All commercial PSTN lines

- We estimated the total number of commercial PSTN lines remaining nationally based on the proportion of lines attributable to each operator at the network's peak and projected two scenarios, a baseline and accelerated scenario, for possible migration paths.
- We projected the number of commercial lines attributable to five (energy, water, healthcare, emergency services, government) relevant CNI sectors by applying known proportions of lines for these sectors and distributing lines attributed to an unknown sector based on the known proportions.

Line migration: All 3G SIMs

- We estimated the remaining number of commercial 3G SIMs and the trend of retirement through the end of 2025 based on publicly available information from an operator.

Line migration: All 2G SIMs

- We estimated the remaining number of commercial 2G SIMs based on data provided by BT and publicly available information from two operators.
- We charted the path of migration for the 2G network based on publicly available information from operators and the UK Government on targeted shutdown dates.

PSTN device benchmarks:

- We estimated the number of fire and security alarms, lift alarms and telephone lines in each CNI sector based on the proportion of those devices at the network peak.
- We also estimated the number of sector specific devices still using the PSTN based on publicly available reporting and budgets and feedback from relevant sectoral stakeholders, including:
 - Energy: Gas and electricity supply monitors

- Water: Water and flood monitoring devices
- Healthcare: Group telecare devices
- Local government: Group and dispersed telecare devices

- We also projected the total number of fire and security alarms and lift alarms still connected to the PSTN in the UK based on device proportions at network peak and excluding those counted in the other studied sectors.

2G/3G device benchmarks:

- We estimated the number of fire and security alarms and lift alarms in each CNI sector based on desk research on the total volume of these devices and the proportions of these devices attributable each sector in the context of the PSTN.
- We also estimated the number of sector specific devices still using the 2G/3G networks based on publicly available reporting and budgets and feedback from relevant sectoral stakeholders, including:
 - Energy: Smart meters, grid monitors and vehicle telemetry devices
 - Water: Event duration monitors, private sewer pumping stations and vehicle telemetry devices

- Healthcare: Group telecare devices
- Local government: Group and dispersed telecare devices and parking meters

Cost of migrations:

- We estimated the cost of migrating legacy devices based on desk research into publicly available budgets and applied these sourced costs to the baseline and accelerated PSTN scenarios and 2G/3G migration pattern to create a schedule of costs for each sector.
- We apply a percent decrease in voice costs to all migrated telephone lines based on stakeholder feedback.
- We do not account for recurring costs of migration and assume that devices are replaced at the time costs are incurred.

Cost of inaction:

- For most lines and SIMs, we estimated a cost of inaction based on the avoided cost of resilience incidents and related losses of service when firms migrate off these networks. We applied a generic £ value of these incidents sourced from previous modelling.

Concise methodology (Cont.)

Cost of inaction (continued)

- For telecare devices, we calculated the expected cost to both staff monitoring telecare devices and users of these devices based on the output per hour of relevant staff and costs to users from previous modelling.
- For parking meters, we calculated the ongoing costs of maintenance and theft when legacy meters are maintained based on reports from local councils.

Economic benefits of migration

- All benefits are reported in annual estimates for both the baseline and accelerated scenarios of PSTN retirement and the migration pattern for the 2G and 3G networks.
- We do not account for any thresholds at which certain benefits may be realised or below which no benefits may be realised.

Energy: Reduced maintenance and outage

- We estimate the possible reduced spending on maintenance and reduced cost of outage time when legacy electricity distribution network sensing devices are upgraded.
- We use values from previous modelling to assign a £ value for reduced maintenance and a percent decrease in customer minutes lost and customer interruptions.

Energy: Reducing avoidable generation

- We estimate the possible reduced avoidable generation when legacy electricity distribution network sensing devices are upgraded.
- We use values from previous modelling to assign a percent decrease in generation from technological upgrade. We also convert this decrease in generation to emissions savings.

Water: Reducing electricity demand

- We estimate the possible reduced electricity demand when legacy water system sensing devices are upgraded.
- We source the percent reduction in electricity demand with upgrades from previous modelling and convert this decrease in demand to emissions savings as well.

Health: Improved call volume management

- Based on stakeholder feedback, we estimate a percent improvement in the efficiency of call volume management when voice lines are upgraded to VoIP.
- We assign an economic value to this efficiency improvement based on the staff time saved.

Health: Advanced telecare

- We estimate the possible reduction in emergency calling and ambulance journeys from adopting more advanced telecare devices based on advanced connectivity.
- We adopt percentage values from previous modelling on possible reductions, assign a £ value to reduced emergency calling based on staff time saved and a £ value to ambulance journeys based on costs to the NHS.

Emergency services: Improved call volume management

- Based on stakeholder feedback, we estimate a percent improvement in the efficiency of call volume management when voice lines are upgraded to VoIP.
- We assign an economic value to this efficiency improvement based on the staff time saved.

Alarms: Reduced false alarms

- We estimate the number of reduced false fire alarms per year possible with upgrading automated legacy alarms to advanced connectivity.

- We calculate the value of productivity savings to businesses and the value of cost savings to fire and rescue services, the latter of which we report as an economic benefit to the emergency services sector.

Local government: Improved call volume management

- Based on stakeholder feedback, we estimate a percent improvement in the efficiency of call volume management when voice lines are upgraded to VoIP.
- We assign an economic value to this efficiency improvement based on the staff time saved.

Local government: Advanced telecare

- We estimate the possible reduction in emergency calling and ambulance journeys from adopting more advanced telecare devices based on advanced connectivity.
- We adopt percentage values from previous modelling on possible reductions, assign a £ value to reduced emergency calling based on staff time saved and a £ value to ambulance journeys based on costs to the NHS.
- We report the savings from fewer ambulance journeys as an economic benefit to the health sector.

Sources

- [101 Performance data for Metropolitan Police Service](#), Metropolitan Police Service, July 2025
- [3G network shutdown could hit parking and other services, councils warn](#), PolicyMogul, December 2023
- [999 and 112: the UK's national emergency numbers](#), DSIT, Home Office, DHS, April 2025
- [About us](#), Durham County Council, 2021
- [About Us](#), Northern Ireland Electricity Networks, 2025
- [Advancing Technology Enabled Care: Who cares and who pays?](#), Tunstall, April 2025
- [Aligning our Customer Services and the Drive to Digital – A Review of Customer Service Opening Hours](#), Shropshire Council, July 2023
- [An Analysis of Electricity Consumption Patterns in the Water and Wastewater Sectors in South East England](#), UK, Majid et al, January 2025
- Annual and Sustainability Reports [2022](#) and [2023](#), OVO Energy, 2022-2023
- [Are Your Care Services Ready for the 2G/3G Network Changes?](#), 2iC-Care, May 2025
- [Automatic Fire Alarm Attendance Information](#), North Yorkshire Fire & Rescue Service, 2024
- [Call out charges](#), Humberside Fire & Rescue Service, 2025
- [Car parking](#), Southend-on-Sea City Council
- [Care homes as a model for housing with care and support](#), Social Care Institute for Excellence, 2025
- [Chart of the week: UK population](#), ICAEW Insights, May 2025
- [Cisco Unified Communications](#), Cisco

- [Consultation on Draft Regulations and Proposals for Schemes for the Transfer of Private Sewers to Water and Sewerage Companies in England and Wales](#), DEFRA, August 2010
- [Council-owned homes to receive fire and smoke alarm upgrades](#), Swindon Borough Council, March 2025
- [Customer Experience Strategy](#), City of Wolverhampton Council, 2024
- [Customer Service five year strategy](#), North Somerset Council
- [Customer Service Statistical Analysis](#), Oadby & Wigston Borough Council, 2024
- [DB1 Advanced](#), Rewire Security
- [Diesel swap for electric in £33 million vehicle deal](#), Southern Water
- [Digitalisation of the Rothercare Service](#), Rotherham Metropolitan Borough Council, January 2024
- [Distribution Annual Performance Report 2023/24](#), SP Energy, 2024
- [Driving sustainability: helping united utilities supply water with an electric fleet](#), Vodafone, December 2022
- [Economic rationale for enabling Smart Grid functionality of the UK energy system via a Private Radio Frequency-based enhanced Operational Communications Solution](#), Gmserv, November 2021
- [Electricity North West Information Sheet](#), Electricity North West, July 2017
- [Emergency Alarm Upgrade – Update](#), Epping Forest District Council, January 2024
- [Evaluating Proactive Telecare Outbound Calling in Scotland Report](#), Cund et al, November 2022
- [Event Duration Monitoring - Storm Overflows - Annual Returns](#), DEFRA, March 2025

- [False alarms dataset 2023-24 to present](#), Ministry of Housing, Communities and Local Government, 2025
- [Families and households in the UK: 2023](#), ONS, May 2024
- [Financial results and presentations \(FY 2025\)](#), Vodafone, May 2025
- [Fire and rescue workforce and pensions statistics: England, year ending March 2024](#), Home Office, October 2024
- [Fleet Profile: Anglian Water](#), Business Car, April 2023
- [Fundamental Budget Review Actions](#), Lewes Eastbourne Council
- [How life has changed in Guildford: Census 2021](#), ONS, 2021
- [How life has changed in Norwich: Census 2021](#), ONS, 2021
- [How life has changed in Telford and Wrekin: Census 2021](#), ONS, 2021
- [How the population changed in Oadby and Wigston: Census 2021](#), ONS, June 2022
- [How the PSTN Switch-Off Will Impact the Public Sector](#), Cambridge Management Consulting, 2024
- [Identification of FDI Opportunities in the Primary Care Market in the UK](#), KPMG, October 2016
- [Impact Assessment: Shutdown of 2G Networks](#), Nkom, 2025
- [Key facts and figures about the NHS](#), The King's Fund, July 2025
- [Labour productivity by industry division](#), ONS, January 2022
- [Leading the charge on electrifying our van fleet by 2030](#), British Gas, January 2022

- [Local Government Employment](#), LGA, 2024
- [Local government workforce: Analysis of job roles](#), Local Government Association Analysis and Research, October 2010
- [Major upgrade of telecare services in Leeds successfully completed](#), Leeds City Council, October 2023
- [Mobile network evolution: meeting customer needs now and for future](#), Virgin Media O2, July 2024
- [Mobile Operator EE Sets Out UK Approach to Future 2G Switch Off](#), ISPreview, January 2025
- [Motoring](#), British Park Association
- [National Grid: Live](#), Kate Morley, Accessed 30 July 2025
- [Net Zero Pioneers help us race to Net Zero](#), South West Water, November 2021
- [Network Development Plan Methodology](#), Northern Power Grid, April 2024
- [Next-generation adaptive network restoration on distribution feeders](#), International Conference & Exhibition on Electricity Distribution (CIRED), October 2017
- [NHS 24 111 Operational Statistics](#), NHS 24, July 2025
- [NHS Activity and Performance Summary: April and May 2025](#), Welsh Government, June 2025
- [NHS boosts emergency care workforce before winter with hundreds more paramedics and call handlers](#), NHS England, December 2023

Sources (Cont.)

[NHS Pathways monthly triage data – June 2025](#), NHS England, July 2025

[NHS Workforce Statistics - April 2025 \(Including selected preliminary statistics for May 2025\)](#), NHS England, July 2025

[O2 Expand UK 3G Mobile Switch Off to Norwich, Telford, Guildford and Torquay](#), ISPreview, April 2025

[O2 UK See Significant Inbound 2G and 3G Roaming Traffic as Switch-Off Looms](#), ISPreview, April 2025

[Our Network](#), National Grid, 2025

[Our transport journey: How we're making our vans more environmentally friendly](#), Welsh Water, February 2021

[Output per hour worked](#), UK, ONS, May 2025

[Parking Technology – Westminster City Council](#), Local Government Association

[Police workforce, England and Wales: 31 March 2025](#), Home Office, July 2025

[Population](#), Shropshire Council, 2025

[Population estimates for the UK, England, Wales, Scotland and Northern Ireland: mid-2023](#), ONS, October 2024

[Premature shutdown of 2G and 3G networks: a major security risk for millions of users](#), GPMSE, October 2024

[PSTN lines in the UK](#), Statista, 2008-2018

[PSTN switch-off](#), Hythe and Dibden Council

[PSTN Switch Off in 2025 & Your Alarm Monitoring – Are You Ready?](#), Clarion Security Systems

[PSTN Switch-off to cost London Councils £45m-70m](#), Cambridge Management Consulting, 2024

[PSTN Update](#), Croydon Council, March 2025

[Public Switched Telephone Network \(PSTN\) Switchover Update Report](#), Greater Manchester Combined Authority, February 2024

[Q1 2025 financial results](#), Virgin Media O2, May 2025

[Report on Parking Meter – Lutwyche Road Car Park](#), Church Stretton Town Council

[RFO Report](#), Middlewich Town Council, February 2025

[RIO-ED2 Network Performance Summary 2023-24](#), Ofgem, April 2025

[Scottish Power's Commercial Fleet Begins Journey To Green](#), Scottish Power, December 2020

[Severn Trent pledges to replace fleet with alternative fuel vehicles](#), Severn Trent Water, October 2017

[Special services and equipment charges from 1 April 2024](#), Devon & Somerset Fire & Rescue Service, 2024

[SSEN Distribution](#), SSE, 2025

[Supply of Fleet Vehicles](#), UK Government, January 2023

[Switching off the PSTN: Migrating from Analogue to Digital Landlines](#), Frontier Economics, August 2023

[techUK – The Digital Landline Switchover and Local Authorities](#), techUK, March 2024

[Telecare Service Use in Northern Ireland: Exploratory Retrospective Cohort Study](#), Al-Obaidi et al, May 2022

[Telematics for Fleet](#), Northumbrian Water, March 2022

[The analogue to digital migration: Useful information for telecare service providers](#), TEC Cymru

[The causes of false fire alarms in buildings](#), BRE, 2014

[The Digital Shift and its Impact on the Telecare Sector in England](#), FarrPoint, November 2022

[The Future of Event Duration Monitoring](#), Detectronic

[The Home and Small Business Security System Market](#), Berg Insight

[The Mobile Economy Europe 2025](#), GSMA, January 2025

[The Seventh Carbon Budget](#), Climate Change Committee, February 2025

[The transformational potential of telecare](#), Tunstall, June 2020

[The Value of Lost Load](#), Electricity North West

[Torquay - local data profile](#), Department for Levelling Up, Housing and Communities, March 2024

[UK Power Networks - Network Statistics](#), UK Power Networks, 2024

[United Kingdom: Electricity consumption per capita in United Kingdom](#), International Energy Agency, 2023

[Upgrading the UK to Digital Phone Lines: The Lift Industry](#), Openreach, 2025

[Upgrading water management: how to turn digital investment into real sustainability gains](#), DIGITALEUROPE, January 2021

[Virgin Media O2 to continue 3G switch off in Norwich, Telford, Guildford and Torquay](#), Virgin Media O2, April 2025

[Virgin Media O2 UK Reveals Plan to Switch Off 3G from 2025](#), ISPreview, September 2023

[Wastewater networks plus strategy and investment](#), Wessex Water, October 2023

[Water Industry fact sheet](#), Openreach, 2025

[We're saying goodbye to 2G](#), BT, Unspecified

[Withdrawal of Wholesale Line Rental products](#), SGN

[Yorkshire Water invests in electric vehicle infrastructure](#), Yorkshire Water, February 2023

Important Notice

By accepting this research, the recipient agrees to be bound by the following terms of use. This research has been prepared by Assembly Research Limited and published solely for guidance and general informational purposes. It may contain the personal opinions of analysts based on research undertaken. Assembly Research Limited gives no undertaking to provide the recipient with access to any additional information or to update or keep current any information or opinions contained herein. The information and any opinions contained herein are based on sources believed to be reliable but the information relied on has not been independently verified. Assembly Research Limited, its officers, employees and agents make no warranties or representations, express or implied, as to the accuracy or completeness of information and opinions contained herein and exclude all liability to the fullest extent permitted by law for any direct or indirect loss or damage or any other costs or expenses of any kind which may arise directly or indirectly out of the use of this research, including but not limited to anything caused by any viruses or any failures in computer transmission. The recipient hereby indemnifies Assembly Research Limited, its officers, employees and agents and any entity which directly or indirectly controls, is controlled by, or is under direct or indirect common control with Assembly Research Limited from time to time, against any direct or indirect loss or damage or any other costs or expenses of any kind which they may incur directly or indirectly as a result of the recipient's use of this research.

"Assembly" and "Assembly Research" are trading names of Assembly Research Limited. Assembly Research Limited is a company registered in England and Wales with company number 11022819, whose registered office is 36 Spital Square, London, E1 6DY, United Kingdom.

© 2025 Assembly Research Limited. All rights reserved.

London

36 Spital Square
London
E1 6DY
United Kingdom

+44 20 3026 2700
info@assemblyresearch.co.uk