BT Group is one of the world’s leading connectivity services providers. We manage some of the UK’s best-known brands too. As the oldest telecommunications company in the world, we’ve been at the forefront of technology innovation and progress for 176 years. We’ve seen a lot of change over that time, and today the solutions we offer have never been more important to our customers. The connectivity-based solutions we sell are integral to modern lives, businesses and communities in the UK and across the world. We support millions of customers across c. 180 countries and employ around 100,000 brilliant colleagues.

Our Climate Journey

We have been disclosing our own climate-related performance to CDP since 2003. BT started its climate action journey in 1992, when it became one of the first companies in the world to set a carbon reduction target. This was followed in 2008 by a plan to cut carbon emissions intensity by 80% by 2020, one of the world’s first Science-Based Targets. We reached this target four years ahead of schedule in 2016. In 2013 we set our ambition to enable customers to reduce their carbon emissions by at least three times the end-to-end carbon impact of our business (3:1) by 31 March 2021; we achieved this one year early in 2019/20 by helping our customers save 13 million tonnes of carbon. In 2017, the company announced a Science-Based Target for achievement by end of March 2031, to reduce the intensity of emissions associated with our operations by 87%, in line with our share of the global emissions reductions needed to limit global warming to 1.5C. We also set a target to reduce supply chain emissions by 29% over the same period. In 2018, we committed to become a net zero carbon emissions business by 2045. In 2020 we expanded our net zero target to include our supply chain and increased the ambition of our absolute target for reducing supplier carbon emissions from 29% to 42% by the end of March 2031. In December 2021, we launched the BT Group Manifesto, bringing forward our commitment to become a net zero business by 15 years to 2031. The Manifesto also introduced our new targets to achieve net zero for our supply chain and customer carbon emissions by 2041, to help customers avoid 60m tonnes of CO2 by 2030, and to build towards a circular BT Group by 2030, and a circular tech and telco ecosystem by 2040.

FY22 Highlights include:

- Cutting our carbon emissions intensity by 55% and reducing our scope 1 and 2 emissions by 55% since 2016/17, by maintaining 100% renewable electricity, introducing more electric vehicles to our fleet and decarbonising our buildings.

- Cutting our supplier carbon emissions by 28% since 2016/17 by continuing to work with suppliers and supporting small businesses to set net zero targets

- Researching the potential for tech to enable a lower-carbon economy, and partnering to scale up solutions developed through our Green Tech Innovation Platform to help public sector and business customers transition to net zero.

- Refurbishing or recycling 170k mobile devices and 1.35m home hubs and set-top boxes, and recovered or recycled 97% of our operational waste worldwide.

(C0.2) State the start and end date of the year for which you are reporting data.

<table>
<thead>
<tr>
<th>Reporting year</th>
<th>Start date</th>
<th>End date</th>
<th>Indicate if you are providing emissions data for past reporting years</th>
<th>Select the number of past reporting years you will be providing emissions data for</th>
</tr>
</thead>
<tbody>
<tr>
<td>April 1 2021</td>
<td>March 31 2022</td>
<td>No</td>
<td><Not Applicable></td>
<td></td>
</tr>
</tbody>
</table>
(C0.3) Select the countries/areas in which you operate.

Algeria
Argentina
Australia
Austria
Bahrain
Bangladesh
Belgium
Brazil
Bulgaria
Canada
Chile
China
Colombia
Costa Rica
Croatia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
France
Germany
Greece
Hong Kong SAR, China
Hungary
Iceland
India
Indonesia
Ireland
Israel
Italy
Japan
Jordan
Kazakhstan
Kenya
Kuwait
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Morocco
Netherlands
New Zealand
Nigeria
Norway
Oman
Pakistan
Panama
Peru
Philippines
Poland
Portugal
Qatar
Republic of Korea
Romania
Russian Federation
Saudi Arabia
Serbia
Singapore
Slovakia
Slovenia
South Africa
Spain
Sri Lanka
Sweden
Switzerland
Taiwan, China
Thailand
Turkey
Ukraine
United Arab Emirates
United Kingdom of Great Britain and Northern Ireland
United States of America
Venezuela (Bolivarian Republic of)
Viet Nam
(C0.4) Select the currency used for all financial information disclosed throughout your response.

GBP

(C0.5) Select the option that describes the reporting boundary for which climate-related impacts on your business are being reported. Note that this option should align with your chosen approach for consolidating your GHG inventory.

Equity share

(C0.8)

(C0.8) Does your organization have an ISIN code or another unique identifier (e.g., Ticker, CUSIP, etc.)?

Indicate whether you are able to provide a unique identifier for your organization

Provide your unique identifier

Yes, an ISIN code

GB0030913577

(C1.1) Is there board-level oversight of climate-related issues within your organization?

Yes

(C1.1a)

(C1.1a) Identify the position(s) (do not include any names) of the individual(s) on the board with responsibility for climate-related issues.

<table>
<thead>
<tr>
<th>Position of individual(s)</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chief Executive Officer (CEO)</td>
<td>The Board delegates day-to-day running of the business to the chief executive. The chief executive: • Leads the Executive Committee • Has responsibility for the day-to-day management of the business and its operations • Develops and recommends the Group strategy and budget to the Board for approval and is responsible for executing the strategy once agreed by the Board • Provides assurance to the Board in relation to overall performance and risk management • Maintains an effective framework of internal control and risk management • Ensures that appropriate consideration is given to the group’s responsibilities to all stakeholders, including but not limited to its shareholders, customers and employees • Meets with BT’s major institutional shareholders • Sets the culture of the organisation, ensuring that this aligns with the company’s purpose, values and strategy. Our chief executive has ultimate responsibility for the company’s environmental policy and performance, which includes climate-related issues. In September 2021, the Group chief executive approved BT Group’s new target to become a net zero carbon emission business by 2031 for Scopes 1 & 2, and 2041 for Scope 3 (in consultation with the Executive Committees). In October 2021, the chief executive approved BT Group’s new circular economy ambition (Building towards a circular BT by 2030 and a circular tech and telco ecosystem by 2040). Also in October 2021, the CEO approved BT’s new carbon abatement ambitions to help customers reduce their carbon emissions by 60m tonnes by 2030 through BT’s FTTP, cloud, 5G. The CEO approved the new BT Group Manifesto, launched in December 2021, bringing together BT Group’s commitments for a bright, sustainable future. Our CEO is a member of the Build Back Better Business Council, which is advancing the roll out of EV re-charging infrastructure through the creation of the Electric Vehicle Fleet Accelerator (EVFA). In August 2021, the EVFA published a report outlining urgent actions needed from both industry and Government to help meet the UK’s carbon targets.</td>
</tr>
<tr>
<td>Board-level committee</td>
<td>The Board has overall responsibility for how we identify and manage climate-related risks. Matters reserved to the Board include items of significant strategic importance, such as those which have a direct impact on the Group’s funding position, reputation or integrity; and/or ethical standards. Hence, items such as our net zero strategy are approved by the Board and monitored by the appropriate Board Committee(s). The Board has established certain committees to assist it in discharging its responsibilities. Our Board-level Digital Impact and Sustainability Committee (DISC) oversees our climate change strategy, programme and goals, as well as other elements of our long term digital impact and sustainability programmes. Prior to its launch December 2021, this Committee approved the new BT Group Manifesto, which includes new goals to help customers reduce their own carbon emissions by 60m tonnes by 2030 and build towards a circular BT by 2030. Every year, our Board-level Remuneration Committee agrees the remuneration framework for the chairman, executive directors and certain senior executives and monitors remuneration practices and policies for the wider workforce. This year they approved the 5% of the annual bonus available to eligible managers, including executive directors, which is linked to our target of cutting the carbon emissions intensity of our operations by 87% by the end of March 2031 (a further 5% is based on our digital skills target, with ESG making up a total of 10%). Our Board Audit and Risk Committee (BARC) is accountable for monitoring and assessing the effectiveness of our risk management and internal control systems on behalf of the Board, including those relating to climate change risks.</td>
</tr>
</tbody>
</table>
Provide further details on the board’s oversight of climate-related issues.

<table>
<thead>
<tr>
<th>Frequency with which climate-related issues are a scheduled agenda item</th>
<th>Governance mechanisms into which climate-related issues are integrated</th>
<th>Scope of board-level oversight</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheduled – all meetings</td>
<td>Reviewing and guiding strategy</td>
<td>Our Board-level Digital Impact and Sustainability Committee (DISC) is responsible, on behalf of the Board, for agreeing the digital impact and sustainability strategy for the group. It monitors progress on our long-term digital impact and sustainability goals, including those relating to digital skills, human and digital rights, climate change, the environment and social issues, such as fundraising and volunteering. The committee is comprised of three independent non-executive directors and our new chairman attended the committee in March. The group HR director, director of corporate affairs, director of digital impact & external communications and the sustainability and corporate affairs strategy director also attend. The company secretary is secretary to the committee and attends all meetings. The chair reports to the Board on the committee’s activities. The committee met four times this year – climate-related issues featured at every meeting. It reviewed the group’s climate strategy and our public decarbonisation commitments, including approving our new accelerated net zero targets for our operations and for our Scope 3 emissions. The committee also reviewed the group’s circular economy and carbon abatement goals, and the newly launched BT Group Manifesto.</td>
<td></td>
</tr>
</tbody>
</table>

C1.1d

C1.1d) Does your organization have at least one board member with competence on climate-related issues?

<table>
<thead>
<tr>
<th>Board member(s) have competence on climate-related issues</th>
<th>Criteria used to assess competence of board member(s) on climate-related issues</th>
<th>Primary reason for no board-level competence on climate-related issues</th>
<th>Explain why your organization does not have at least one board member with competence on climate-related issues and any plans to address board-level competence in the future</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>The Nominations Committee, on behalf of the Board, review the skills, experience and diversity needed on the Board to best support management in executing the strategy of the business. Several board members have recent experience in setting strategy on climate-related issues, including formerly chairing the Corporate Leaders Group on Climate Change and chairing the sustainability committee at a major international company.</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
</tbody>
</table>

C1.2

C1.2) Provide the highest management-level position(s) or committee(s) with responsibility for climate-related issues.

<table>
<thead>
<tr>
<th>Name of the position(s) and/or committee(s)</th>
<th>Reporting line</th>
<th>Responsibility</th>
<th>Coverage of responsibility</th>
<th>Frequency of reporting to the board on climate-related issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chief Executive Officer (CEO)</td>
<td><Not Applicable></td>
<td>Both assessing and managing climate-related risks and opportunities</td>
<td><Not Applicable></td>
<td>More frequently than quarterly</td>
</tr>
<tr>
<td>Other committee, please specify (The Executive Committee)</td>
<td><Not Applicable></td>
<td>Both assessing and managing climate-related risks and opportunities</td>
<td><Not Applicable></td>
<td>More frequently than quarterly</td>
</tr>
<tr>
<td>Other committee, please specify (The Digital Impact & Sustainability Board Committee (delegated by the BT Group plc Board))</td>
<td><Not Applicable></td>
<td>Both assessing and managing climate-related risks and opportunities</td>
<td><Not Applicable></td>
<td>Quarterly</td>
</tr>
</tbody>
</table>

C1.2a
(C1.2a) Describe where in the organizational structure this/these position(s) and/or committees lie, what their associated responsibilities are, and how climate-related issues are monitored (do not include the names of individuals).

Our chief executive has ultimate responsibility for the company's environmental policy and performance, which includes approving programmes to deliver our sustainability strategic priorities and address material climate change risks, such as converting our fleet to ultra-low emission vehicles and investing in flood defences. He is advised by our Executive Committee (ExCo), in setting the operational strategy on climate change and monitoring the associated risks. ExCo is comprised of the CFO, CTO, corporate affairs director, CEOs of the Consumer, Global and Enterprise businesses, general counsel, chief digital & innovation director, and HR director. Our CEO also has a key advocacy and senior advisory role; in January 2021, he was one of 30 UK industry leaders invited to join the new Build Back Better Council, which has worked in partnership with Government to aid the UK's recovery from the COVID-19 pandemic, including launching a green industrial revolution.

Our sustainability director meets with ExCo to discuss how we are advancing our sustainability and ESG strategy. The sustainability director and their team are responsible for developing programmes, and managing and reporting to the ExCo, DISC and Remuneration Committee on progress against our climate change strategy and carbon emissions reduction targets.

We manage and monitor environmental risks across our business. In addition to the highest management-level committee listed in question C1.2, BT's senior leadership also provides global oversight through the Environmental Management Governance Group (EMGG); it is comprised of BT's chief technology officer (Executive Committee member), MD dynamic infrastructure, CFO-technology, director of digital impact and sustainability, principal lawyer- environment, global EMS manager, senior manager - environment compliance, among others. Set up in 2018 to streamline our approach, the group is chaired by the ExCo sponsor for environmental risk, BT’s chief technology officer; it has a formal line of reporting to the chief executive and ExCo, and issues may be escalated to the Board as required. In the UK, management of our most significant environmental risks is led by the Environmental Management Compliance Steering Group. This group meets every month and reports to the EMGG quarterly. Its members are senior managers responsible for addressing environmental risks and delivering performance improvements under our ISO 14001-certificated environmental management system. Going forward, the EMGG will be replaced by the Group Environment Board.

(C1.3) Do you provide incentives for the management of climate-related issues, including the attainment of targets?

<table>
<thead>
<tr>
<th>Provide incentives for the management of climate-related issues</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1 Yes</td>
<td>From April 2020, we introduced key performance indicators (KPIs) on Digital Impact & Sustainability into our incentive scheme for all managers, placing sustainability at the core of what we do. Five percent of the annual bonus for managers is linked to our target of cutting the carbon emissions intensity of our operations by 87% by the end of financial year 2030/31.</td>
</tr>
</tbody>
</table>

C1.3a
(C1.3a) Provide further details on the incentives provided for the management of climate-related issues (do not include the names of individuals).

<table>
<thead>
<tr>
<th>Entitled to incentive</th>
<th>Type of incentive</th>
<th>Activity Incentivized</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chief Executive Officer (CEO)</td>
<td>Monetary reward</td>
<td>Emissions reduction target</td>
<td>Five percent of the annual bonus is linked to our target of cutting the carbon emissions intensity of our operations by 87% by the end of financial year 2030/31.</td>
</tr>
<tr>
<td>Chief Financial Officer (CFO)</td>
<td>Monetary reward</td>
<td>Emissions reduction target</td>
<td>Five percent of the annual bonus is linked to our target of cutting the carbon emissions intensity of our operations by 87% by the end of financial year 2030/31.</td>
</tr>
<tr>
<td>Chief Procurement Officer (CPO)</td>
<td>Monetary reward</td>
<td>Emissions reduction target</td>
<td>Five percent of the annual bonus is linked to our target of cutting the carbon emissions intensity of our operations by 87% by the end of financial year 2030/31.</td>
</tr>
<tr>
<td>Executive officer</td>
<td>Monetary reward</td>
<td>Emissions reduction target</td>
<td>Five percent of the annual bonus is linked to our target of cutting the carbon emissions intensity of our operations by 87% by the end of financial year 2030/31.</td>
</tr>
<tr>
<td>Buyers/purchasers</td>
<td>Monetary reward</td>
<td>Emissions reduction target</td>
<td>Five percent of the annual bonus for managers is linked to our target of cutting the carbon emissions intensity of our operations by 87% by the end of financial year 2030/31.</td>
</tr>
<tr>
<td>Energy manager</td>
<td>Monetary reward</td>
<td>Energy reduction project</td>
<td>Five percent of the annual bonus for managers is linked to our target of cutting the carbon emissions intensity of our operations by 87% by the end of financial year 2030/31.</td>
</tr>
<tr>
<td>Environment/Sustainability manager</td>
<td>Monetary reward</td>
<td>Emissions reduction target</td>
<td>Five percent of the annual bonus for managers is linked to our target of cutting the carbon emissions intensity of our operations by 87% by the end of financial year 2030/31.</td>
</tr>
<tr>
<td>Chief Sustainability Officer (CSO)</td>
<td>Monetary reward</td>
<td>Emissions reduction target</td>
<td>Five percent of the annual bonus is linked to our target of cutting the carbon emissions intensity of our operations by 87% by the end of financial year 2030/31.</td>
</tr>
<tr>
<td>All employees</td>
<td>Monetary reward</td>
<td>Emissions reduction target</td>
<td>Five percent of the annual bonus for managers is linked to our target of cutting the carbon emissions intensity of our operations by 87% by the end of financial year 2030/31.</td>
</tr>
<tr>
<td>Other, please specify</td>
<td>Non-monetary reward</td>
<td>Environmental criteria included in purchases</td>
<td>The device portfolio team, who determine which products are on offer to our customers, have specific targets related to the sustainability of consumer devices in their individual personal objectives.</td>
</tr>
</tbody>
</table>

C2. Risks and opportunities

C2.1

(C2.1) Does your organization have a process for identifying, assessing, and responding to climate-related risks and opportunities?

Yes

C2.1a

(C2.1a) How does your organization define short-, medium- and long-term time horizons?

<table>
<thead>
<tr>
<th>From (years)</th>
<th>To (years)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-term</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Medium-term</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Long-term</td>
<td>5</td>
<td>20</td>
</tr>
</tbody>
</table>

C2.1b

(C2.1b) How does your organization define substantive financial or strategic impact on your business?

Our risk management framework provides a consistent approach for how we identify, assess, manage, monitor and escalate risks. We divide the world of risk into ‘enduring’ and ‘dynamic’ risks. Enduring risks are risks to which we have constant exposure and for which we manage via a set of enduring activities captured by clear requirements across sixteen Group Risk Categories. Dynamic risks are either ‘point’ risks (i.e. risks at a point in time) or ‘emerging’ risks (i.e. more ambiguous but potentially material risks). Point and emerging risks are relevant to the successful delivery of our strategic objectives. Point risks are evaluated on the basis of impact and likelihood. Impact is assessed in terms of quantitative and qualitative descriptors of the effect on company revenues and market capitalisation, the customer experience, stakeholder perception, and/or the degree of senior management time diverted to address the issue, along with the likelihood of that impact. For example, any point risk carrying a potential impact on revenues of greater than £500m, or that would be covered in the international press, would be deemed significant to the company and would get visibility and discussion at the ExCo level. Emerging risks are evaluated on the basis of impact (using the same criteria as with point risks), preparedness and time horizon. In the next section we provide further details on how we assess each type of risk. Both point and emerging risks, and the described thresholds, are relevant to our consideration of climate-related risks.
(C2.2) Describe your process(es) for identifying, assessing and responding to climate-related risks and opportunities.

Value chain stage(s) covered
- Direct operations
- Upstream
- Downstream

Risk management process
Integrated into multi-disciplinary company-wide risk management process

Frequency of assessment
More than once a year

Time horizon(s) covered
- Short-term
- Medium-term
- Long-term

Description of process
Our risk management framework covers two types of risk:
1) Enduring risks – Covered by sixteen Group Risk Categories (GRCs), which are each owned by a member of our ExCo (the ‘GRC Sponsor’), and endure over all time horizons
2) Dynamic Risks, including:
 • Point risks- Risks at a ‘point in time’ that have a clear cause-event-consequences structure; tend to cover the short-term
 • Emerging risks- do not yet have a clear cause-event-consequence structure but can be materially significant; tend to cover medium-long-term time horizons

Every dynamic risk has an individual owner; dynamic risks are also categorised by the GRCs, so ultimate ownership lies with the GRC Sponsor.

Identification
Formal activity to identify risks across all stages of BT’s value chain is undertaken by each GRC Sponsor / Owner and their teams and each Customer Facing Unit / Corporate Unit on an ongoing basis with the reporting and discussion frequency described above.

Climate change-related risks have been identified under various Group Risk Categories, such as Service Interruption, Supply Management and Stakeholder Management. For example, the increasing frequency and severity of extreme weather events, and the impact they can have on our operations, has been identified as an emerging risk that could affect the Group Risk Category, “Service Interruption”, which is owned by our chief technology officer (CTO). Extreme weather events, as they affect our supply chain, are assessed and addressed as a separate risk within our Supply Management GRC.

In addition to the general risk processes described above, an independent review in 2021, based on the World Economic Forum’s Principles for effective climate governance on corporate boards, identified the need for a more holistic viewpoint on climate-related risks. In 2021, we established a BT-wide approach for looking at emerging risk (including climate change) that spanned across all Group Risk Categories and our business units. We established five emerging risk ‘hubs’ of internal stakeholders from across the business, each with an ExCo sponsor, which now ensures a consistent, collaborative and cross-functional way of addressing these risks.

Climate change is one of these hubs and in March 2022, the first climate change hub session took place. In 2022, we will be launching additional internal training to BT risk professionals on climate change.

Assessment
Point risks are assessed against the impact and likelihood descriptors in BT’s Risk Assessment Matrix. The matrix defines 4 levels for impact and 4 levels for likelihood. The impact assessment scale goes from “A” (highest) to “D” (lowest). The likelihood scale goes from “remote” – a 5% probability within the next 3 years – to “likely” – a more than 50% probability. Impact can be assessed through a mix of financial, stakeholder perception and customer experience criteria. The overall risk size is given by the combination of both impact and likelihood; “high” risks include A1, A2, A3, B1 or B2.

As with point risks, emerging risks are assessed against potential impact (using the Risk Assessment Matrix, where possible). Due to the nature of emerging risks, instead of “likelihood”, the assessment considers preparedness (unprepared or partially prepared) and range (period over which the emerging risk is expected to turn into a point risk). Emerging risks without the potential to reasonably reach levels A or B of impact in either of the impact criteria mentioned above, were they to materialise, are not actively monitored. For those that carry that potential impact, an owner is assigned at either ExCo or senior leadership team (SLT) level.

For example, with respect to the emerging risk of the increasing frequency and severity of extreme weather events, we consider:
• Potential impact: customer experience; could reasonably reach the second-highest level of impact
• Range: short term
• Preparedness: partially prepared (the highest level for an emerging risk), based on our existing weather resilience work.

Response
For each point risk, actions and owners are identified with a view to mitigating either the cause or consequence of the risk, or both. Our “appetite” metrics guide the identification of these actions.

For emerging risks, the focus is on the level of preparedness to absorb or respond to potential impacts. Such preparations could include disaster recovery plans, monitoring with threshold triggers, and a defined longer term policy direction. As with point risks, actions are assigned an owner.

For example, with respect to the emerging risk of the increasing frequency and severity of extreme weather events, the risk is owned at the SLT level by the Director of Service, Digital and Networks, who reports to our CTO. We focus climate adaptation measures on key assets, investing in flood protection works and cooling systems upgrades at key sites.

Review
Risks are reviewed at least quarterly by each unit leadership team (LT). A risk report for each Group Risk Category is reviewed by the ExCo and by the Board Audit & Risk Committee (BARC); in 2020/21 this review was quarterly; going forwards the review of these formal reports will be half-yearly to allow for a more holistic discussion of the whole risk landscape in the intermediate quarters. BT’s internal audit team report to the BARC on the effectiveness of the system of risk management and internal control.

For example, the emerging risk of the increasing frequency and severity of extreme weather events is reviewed regularly. Our scenario analysis looks in detail at the vulnerability of individual sites to extreme weather risks, and we are working with the Environment Agency to identify how current and planned Flood Protection Schemes will affect our assets. The risk is included in the “Service Interruption” Risk Report to the ExCo and the BARC.
(C2.2a) Which risk types are considered in your organization’s climate-related risk assessments?

<table>
<thead>
<tr>
<th>Relevance & inclusion</th>
<th>Please explain</th>
</tr>
</thead>
</table>
| Current regulation | Relevant, always included | In FY22, our Environmental Management Governance Group (EMGG) met quarterly to oversee management of our most significant environmental risks, including climate-related risks. This group was chaired by our ExCo sponsor for environmental risk, BT’s Chief Technology Officer, and reports regularly to our ExCo. Going forwards, the EMGG will be replaced by the Group Environment Board; this will still be chaired by the CTO, with MD level attendance from each CFU, plus the legal and assurance teams.

We use a third-party system and an external legal firm to monitor current (and proposed) environmental regulations and compliance obligations across our markets. Our key risk leads evaluate compliance regularly and our Environmental Management Compliance Steering Group, which meets each month, considers how these regulations may impact on BT (in FY22, this group reported to the EMGG).

For example, we have kept a close watch on the impacts of Brexit, such as carbon emissions trading and product stewardship, as well as local impacts such as the expansion of low emission zones in the UK resulting from Local Authority Air Quality Action Plans. The widening scope of the EU Medium Combustion Plant Directive, to affect existing equipment, and the Minimum Energy Efficiency Standards (MEES) regulations, to include commercial properties, will also affect BT. |

| Emerging regulation | Relevant, always included | The 2015 Paris Agreement on climate change, the United Nations Sustainable Development Goals (SDGs), the October 2018 Intergovernmental Panel on Climate Change (IPCC) Special Report, the net zero announcement by the UK Government and many other policy measures urge accelerated climate action by all actors in the global economy – including business and financial institutions. For example, many of our raw materials suppliers are based in China, which in September 2020 pledged to peak emissions before 2030 and reach carbon neutrality before 2060, despite having a relatively carbon intensive economy. In February 2021, the national emissions trading scheme officially launched, for coal- and gas-fired power plants.

Our digital impact and sustainability team (within our corporate affairs unit) are monitoring proposals and developments in new regulation supporting a 1.5°C threshold. Our EMS regularly horizon scans and participates in consultation with government and industry bodies, such as TechUK and the Aldersgate Group to ensure BT is prepared for change. |

| Technology | Relevant, always included | The risk that new technology developments could make it harder for us to monetise our network investment and could potentially force us to invest more to meet the needs of customers, or that new disruptive technologies could substitute our products, are not specifically related to climate change. However, as society looks to technology to address some of the huge challenges climate change poses, and as the effects of climate change rapidly change our work, there is a risk that our strategy and business model could be disrupted by technology change should we not stay at the forefront of a rapidly changing world. Technology to combat climate change is also an opportunity for us, and we are constantly looking at new innovations: there is a risk that lagging behind competitors could result in loss of market share. For example, telemedicine offers big benefits for patients, medical staff and the climate. We are also seeing increased interest from investors and policymakers. There is a risk, should we not meet our carbon targets or other climate-related stakeholder expectations, that we could incur reputational damage, loss of customers or shareholders. |

| Legal | Relevant, always included | All risk types are considered within BT’s risk management framework. However, the risk of climate-related litigation claims against BT is currently deemed to be low. Despite the increase in such litigation against corporates in recent years, the defendants tend to be companies in highly carbon intensive industries, such as those in the energy and cement industries, where the claimant seeks to establish corporate liability for historic climate change contributions. For example, see le.ac.uk/granthaminstitute/wp-content/uploads/2021/07/global-trends-in-climate-change-litigation_2021-snapshot.pdf.

The communications sector is widely recognised as a low carbon intensity sector that is enabling a low carbon economy. In addition, the sector is at the forefront of SEIs and the purchasing of renewables – see “Mobile Net Zero – State of the Industry on Climate Action” at gsma.com/betterfuture/resources/mobile-net-zero-state-of-the-industry-on-climate-action. |

| Market | Relevant, always included | We consume around 1.8TWh of electricity in the UK annually to run our business, and are sensitive to wholesale price variations. Higher energy prices or volumes can adversely impact our cost base and therefore EBITDA and cashflow, which could impact our ability to invest in strategic projects. It is important that we manage both price certainty and volume reductions against a backdrop of increasing network demand.

The price of carbon is a key input into the wholesale price of electricity. Our Networks team is responsible for managing energy use across the Group and a focus on energy use and cost reductions will be seen as part of overall cost transformation. To deliver cost certainty as part of our budget planning process, strategies are in place that aim to lock in prices over the long-term through hedging and renewable backed Power Purchase Agreements (PPA) which supply c.17.3% of our UK supply. We are actively exploring options to increase our energy efficiency and carbon emissions costs, while providing a strong long-term demand signal. |

| Reputation | Relevant, always included | Corporate action on climate change is of increasing focus to stakeholders, including with our customers. This is reflected in the increased importance of climate in purchasing decisions, as demonstrated by the types of questions we are being asked during the bidding process and is evident in our own customer research. Examples include the UK Government’s requirement for net zero transition plans, and our research into action on climate change (newsroom.bt.com/new-bt-research-reveals-almost-half-of-people-dont-feel-they-have-the-ability-to-tackle-climate-change/). We are also seeing increased interest from investors and policymakers. There is a risk, should we not meet our carbon targets or other climate-related stakeholder expectations, that we could incur reputational damage, loss of customers or shareholders. |

| Acute physical | Relevant, always included | Extreme weather events are on the rise, and with them threats to people, property, infrastructure and services. Service Interruption is one of our Group Risk Categories. Any major interruption, such as a flood at a large exchange, could result in disruption to customer service, increased costs, loss of revenue as well as impact to brand and reputation. Any loss of service, such as in February 2022 when three severe storms – Dudley, Eunice, and Franklin – damaged parts of our network, can undermine customer trust and has the potential for them to take their business to another operator. |

| Chronic physical | Relevant, always included | In most scenarios in 2030 and 2050, the UK will see a rise in extreme heat days. Much of our network equipment is temperature-sensitive, and so, if unmitigated, this risk could lead to increased cooling and maintenance costs, and possible service interruption. However, we now assess the risk of damage of this type to our network sites to be low as we are upgrading the cooling systems at our metronode sites to tolerate a 45°C ambient temperature. |

(C2.3) Have you identified any inherent climate-related risks with the potential to have a substantive financial or strategic impact on your business? Yes

(C2.3a) Provide details of risks identified with the potential to have a substantive financial or strategic impact on your business.

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Risk 1</th>
</tr>
</thead>
</table>

| Risk type & Primary climate-related risk driver | Acute physical | Other, please specify (Severe storms and flooding) |
Primary potential financial impact
Increased indirect (operating) costs

Climate risk type mapped to traditional financial services industry risk classification
<Not Applicable>

Company-specific description
Extreme weather events can damage our infrastructure and disrupt our ability to deliver our services. Although BT Group provides services across the globe, it is in the UK that we maintain critical national infrastructure, owning and managing the UK’s core fixed network and holding key mobile spectrum. In March 2022, BT was one of four key national infrastructure providers called to the Joint Committee on the National Security Strategy on the issue of critical national infrastructure and climate adaptation.

With our legal mandate to maintain the UK’s critical infrastructure, severe storms affecting the UK have always been a risk BT must manage. FY22 was notable for several severe storms. Storm Arwen in November saw a Met Office Red weather warning issued for wind along the northeast coast. In February 2022, an unprecedented three named storms (Dudley, Eunice, Franklin) hit the UK in a week, with two Red Weather Warnings issued and some of the highest wind speeds recorded in the UK. All of these storms caused some physical damage to our network, although Storm Arwen had the greatest impact since it was followed by heavy snow, which hampered repair work.

Such major events can also have implications for our operational strategy. In the UK, the industry has known for a long time that the old analogue phone system (public switched telephone network – PSTN) is due to be switched off in 2025, and that all home phone users, with any provider, will need to be upgraded to a digital system before then. At BT, we have 10 million customers still to upgrade. At the end of March 2022, following the major storms, BT announced a pause to our digital voice rollout to customers, which will require significant changes to our operational approach in the short term. The options following the pause are currently being assessed. Although replacing the old analogue technology will have various social benefits, in addition to lowering electricity usage, we do recognise that the loss of broadband following a power cut increases the risk of loss of telephony services for customers reliant on landlines. We are working with energy providers on faster power restoration and providing better back-up solutions and support for customers.

Time horizon
Medium-term

Likelihood
Likely

Magnitude of impact
Medium

Are you able to provide a potential financial impact figure?
Yes, a single figure estimate

Potential financial impact figure (currency)
22000000

Potential financial impact figure – minimum (currency)
<Not Applicable>

Potential financial impact figure – maximum (currency)
<Not Applicable>

Explanation of financial impact figure
The storms of FY16, when 11 separate winter storms over a five-month period in the UK resulted in a cumulative impact and record levels of flooding, led to operating costs in Openreach growing by 4% (£22m) in the last quarter of FY16. The main cost was flood repairs. Our potential financial impact figure of £22m reflects an extreme scenario with multiple geographically dispersed events; most extreme weather events affect a much narrower geographic area and so incur proportionately lower costs.

Fortunately, FY22 did not include a major national flood event, of the like seen with Storm Desmond and other storms in FY16. FY22 did experience significant storms, with associated wind damage to our network and the national power supply; please note that the direct impacts on operating costs is not comparable to the more extreme examples in FY16. Hence the financial impact figure has not been updated in the light of the events of FY22, as £22m represents the maximum we’ve experienced thus far and therefore reflects an extreme scenario.

Cost of response to risk
2200000

Description of response and explanation of cost calculation
As a critical national infrastructure provider for the UK, we work with others to manage extreme weather events. These include the Electronic Communications Resilience and Response Group, the National Emergency Alert for Telecommunications process, civil resilience forums, the Met Office and the Environment Agency.

The annual cost of responding to this risk (£2.2m) includes the £1.2m spent in the final year of our 5-year Strategic Flood Programme. 39 exchange sites are now protected by measures such as flood doors, and the drains at 106 metronode sites have been checked and repaired. The annual cost also includes the £1m yearly running cost of our Emergency Response Team (ERT). Our ERT is deployed to protect critical assets at risk, to restore service as quickly as possible, and to provide emergency communications facilities.

Case study: Storm Arwen
In November 2021, Storm Arwen brought winds of up to 177 km/h to the north and west of the UK. Openreach reported that access network faults ran into the thousands in some areas. Most service interruptions were due to national grid power cuts; we activated 1,800 back-up diesel generators to maintain service.

We are taking steps to ensure customers can still make calls if their power supply and broadband service (which are used by modern landlines) are affected in the future. In summer 2022, we will be launching phones with a longer battery back-up time, and phones that can switch to mobile if the broadband goes down for customers without a separate mobile phone. We are also expanding mobile coverage with continued investment in the Shared Rural Network, with a further 2,000 mobile sites by 2024. This does not mitigate our operational costs, but helps ensure we can maintain critical services in the UK.

Storm Arwen demonstrated the need for greater co-ordination across the Critical National Infrastructure operators. BT is part of a consultation by Ofcom on improving resilience across the telecoms sector. BT is also involved in the UK Government-led National Digital Twin project, along with Anglian Water and UK Power Networks. The pilot project is mapping the interconnectedness of the water, power and communications infrastructures, to identify key points where resilience needs to be strengthened in relation to climate risk.

Comment
BT’s exposure to this risk will change going forwards. Our FTTP rollout and the closure of the PSTN network will mean fewer physical network sites in the future. That reduces our overall exposure to physical climate change risks, although does mean our services will rely on fewer operational locations, which will need to be well-defended. Additionally, FTTP services are more ‘passive’ (with no electronics between exchanges and connected properties), further reducing the risk of equipment damage from extreme weather events.

Identification

- **Ri...t:** Risk 2
- **Where in the value chain does the risk driver occur?** Upstream
- **Risk type & Primary climate-related risk driver**
 - **Market** Other, please specify (Energy Attribute Certificate availability)

Primary potential financial impact

Increased indirect (operating) costs

Climate risk type mapped to traditional financial services industry risk classification

<Not Applicable>

Company-specific description

The purchase of large quantities of renewable electricity – approximately 2.6 TWh/annum – is a key element of BT’s climate transition plan, both for meeting our ambitious carbon targets and our RE100 target. BT uses most of this to power the electrical equipment which comprises the UK's largest communications network, and so the cost of meeting our targets is particularly affected by changes in the price of UK energy attribute certificates (Renewable Energy Guarantees of Origin; REGOs). The increasing price of such certificates is likely to affect all telecoms companies with climate commitments, as the sector uses a high proportion of electricity in comparison to other energy sources, although this is also a key factor in the industry’s overall low carbon intensity, given the transition to renewable electricity.

Under the scenarios considered as part of our work in relation to the TCFD, the availability of REGOs may become constrained if demand outstrips capacity as more organisations choose to purchase renewables, further increasing the cost of these certificates. In “Reducing UK emissions- 2019 Progress Report to Parliament Committee on Climate Change”, it is stated that around 60 TWh additional uncontracted low-carbon generation is required during the 2020s if the UK is to be on track to achieve net zero emissions by 2050. Although the UK Government has committed to significantly expand wind power production, there may still be a shortfall. Similar increases in the prices of other types of Energy Attribute Certificate are unlikely to have as significant an impact on BT, due to the relatively low quantities purchased since we do not operate the same type of national infrastructure outside the UK and so have lower electricity needs in other countries.

2021 has served as an early warning of the potential impacts. REGO prices increased in 2021, with some sources quoting a more than 15-fold price increase over the course of FY22. Drivers included the unexpectedly low renewable energy generation and higher demand for REGOs driven by increasingly ambitious corporate carbon commitments and customers swapping from GOs to REGOs for their UK consumption post Brexit.

Time horizon

Long-term

Likelihood

More likely than not

Magnitude of impact

Low

Are you able to provide a potential financial impact figure?

Yes, a single figure estimate

Potential financial impact figure (currency)

10000000

Potential financial impact figure – minimum (currency)

<Not Applicable>

Potential financial impact figure – maximum (currency)

<Not Applicable>

Explanation of financial impact figure

The potential financial impact figure is based on estimates of the cost of purchasing energy attribute certificates for our electricity use (the vast majority of which are REGOs, to cover our UK electricity use) based on external forecasts provided by BT’s energy suppliers. This includes the cost of purchasing unbundled certificates for sites where the landlord holds the contract with the electricity supplier, and to cover our use of back-up generators, electric vehicle charging, and similar activities, and the purchase of bundled certificates negotiated with our electricity suppliers.

Cost of response to risk

300000

Description of response and explanation of cost calculation

We have a dedicated team who work full time on programmes to cut energy consumption, reducing the financial impact of any increases in the prices of EACs, electricity and carbon. To deliver cost certainty in our budgeting and planning processes, we take a long term procurement view and have strategies to lock in electricity prices, such as through renewable-backed Power Purchase Agreements (PPA). In FY22, we sourced ~17% of our UK electricity supply via 5 PPAs with wind and solar plants in the UK, with a guarantee of receiving the EACs generated by those installations. This reduces our exposure to rises in the prices of electricity, carbon and EACs over the long term, by disconnecting BT, in part, from wholesale market prices, and fluctuations in the prices of traded carbon allowances and EACs. We also continue to monitor any additional carbon-related taxes and duties across all our operations.

Case study: PPAs

As part of our climate strategy, we have a range of PPAs in place with different renewables providers across the UK. For example, a 8MW solar farm has been providing power to our Adastral Park research centre since 2014, at a cost of £26 million over 20 years. In 2017 we signed an £185m agreement to take power from thirteen wind turbines at Stroupster, providing us with 100GWh per year, over 15 years.

In addition to reducing our exposure to market variability around the price of REGOs, PPA projects help us to support the local economies in which we operate. PPAs remain a key part of our climate strategy, and our team is currently exploring a further five opportunities; such new capacity could come on-line in FY24.

Cost calculation: Our additional management cost figure relates to the extra spend on negotiating and managing PPA contracts compared to standard electricity contracts,
and exploring opportunities to develop self-generation projects. The energy procurement team have estimated this figure based on colleague salaries in that team and consultancy spend for the whole of energy procurement, and then apportioned to the PPAs and self-generation projects based on factors such as colleague worktime per annum.

Comment

C2.4

(C2.4) Have you identified any climate-related opportunities with the potential to have a substantive financial or strategic impact on your business?

Yes

C2.4a

(C2.4a) Provide details of opportunities identified with the potential to have a substantive financial or strategic impact on your business.

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Opp1</th>
</tr>
</thead>
</table>

Where in the value chain does the opportunity occur?

Downstream

Opportunity type

Products and services

Primary climate-related opportunity driver

Development and/or expansion of low emission goods and services

Primary potential financial impact

Increased revenues resulting from increased demand for products and services

Company-specific description

We believe the UK is on the cusp of a green industrial revolution, including mobility, smart cities and 5G, that will enable us all to reduce our carbon footprints. We anticipate that growing public awareness of climate change will increase demand for our low carbon products and services, which fall into the broad categories of reducing the need for travel, reducing energy use, and reducing the use of materials and manufactured products. Alongside this, international agreements, such as the Paris Agreement, and the UK Government’s announcements regarding net zero, will increase the cost of carbon intensive activities.

BT continues to be one of the leaders of the green revolution through our unique role in connecting millions of people and businesses in the UK and beyond. From individual consumers to some of the world’s largest companies and public sector organisations, the size, scope and breadth of our customer base gives us an advantage. We can scale up new product innovations quickly through our existing customer relationships, we have both broad and deep customer insight, we have expertise in delivering the managed services that go around a new proposition, and we can consider solutions across a range of customer types.

The BT Group Manifesto, launched in late 2021, includes two key related targets, the pursuit of which mandates us to develop such propositions:

- **Carbon Abatement target**: We drive technology shifts such as FTTP, 5G, Cloud Computing and Internet of Things technologies – and in doing so aim to help customers avoid 60 million tonnes of CO2 by 2030.
- **Circular Economy target**: We’re building towards BT’s products, network and operations becoming circular by 2030, and for the ecosystem – including our suppliers and customers - by 2040. We’re taking a comprehensive approach to ensure people and businesses can buy more sustainable products, use them for longer and refurbish or recycle them.

Time horizon

Medium-term

Likelihood

Likely

Magnitude of impact

Medium

Are you able to provide a potential financial impact figure?

Yes, a single figure estimate

Potential financial impact figure (currency)

25000000

Potential financial impact figure – minimum (currency)

<Not Applicable>

Potential financial impact figure – maximum (currency)

<Not Applicable>

Explanation of financial impact figure

We generated £5 bn this year from BT products and services that can help our customers to cut their carbon emissions. This represents 25% of BT’s total revenue.

Our aim is to maintain or grow revenue from our low-carbon portfolio; for the purposes of this response we have assumed a 0.5% increase in Group revenue from these low-carbon solutions to calculate this opportunity for the coming year. Potential financial impact is thus calculated as 0.5% of £3bn - £25m in FY23. Building on our new goal to help customers avoid 60 million tonnes of CO2 by 2030, we will make further investments to further develop our range of carbon abating solutions and expect to grow the sales of these products beyond the opportunity indicated here.
Cost to realize opportunity
400000

Strategy to realize opportunity and explanation of cost calculation
We work closely with the manufacturers of our products to reduced embodied carbon and spur eco-innovation.

Case study:
At COP26, our Green Tech Innovation Platform (GTIP) won the Responsible Business Alliance Innovation Award. GTIP fosters collaborations with scale-ups to develop breakthrough technology to help our customers cut emissions. BT is already supporting iOpt and Everimpact in developing solutions for our public sector customers:

• iOpt’s platform provides real-time information and alerts on building energy use and other aspects of performance for social housing providers. In FY22 we trialled this technology with a housing association and iOpt become one of BT’s official suppliers. The proposition is now owned by our Division X team who deliver Internet of Things Technology products and other innovations. They will be working in FY23 to bring it to our customers and build it into sales targets over time.
• In May 2022 we installed CO2 Everimpact sensors into BT Street Hubs in Birmingham, our first proof of concept to test the data we receive, and the platform to provide it to customers. This will be followed by further testing with other city councils in the UK.

In February 2022, we launched “Green TIP II”, which focuses on smart manufacturing solutions for FMCG. This followed publication of our report with Accenture, “Harnessing data to empower a sustainable future”, which identified the role ICT (Information and Communication Technologies) can play in decarbonising manufacturing. It forecasts that ICT can help reduce carbon emissions from the manufacturing sector by 13% by 2030 (1.3 Gt CO2e) driven by process optimisation and innovation. We are working with the Manufacturing Technology Centre and Plug and Play to identify possible scale-ups.

The cost to manage this opportunity relates to employee time and other costs of running programmes like Green TIP, including consultancy fees and costs of commissioned research. Following the launch of the BT Group Manifesto, three new roles have been created to embed sustainability expertise through the business, including the devices, Enterprise and Global teams. These are in addition to the existing role of consumer sustainability lead.

Comment
Identifier
Opp2

Where in the value chain does the opportunity occur?
Direct operations

Opportunity type
Resource efficiency

Primary climate-related opportunity driver
Other, please specify (More energy efficient network operations and buildings)

Primary potential financial impact
Reduced indirect (operating) costs

Company-specific description
We consume around 1.8Twh of electricity in the UK annually to run the country’s key communications infrastructure, and we target energy savings as part of our strategy to transform our operating model. For example, we have focussed on reducing the energy consumption – while improving the performance - of the cooling systems which protect our network equipment from overheating. As part of our energy efficiency and workplace transformation programmes, we have moved to fewer, more efficient buildings. Over the longer term, FTTP migration will reduce the number of exchanges and other network sites required, and reduce the overall energy consumption of our network. We have already seen energy savings as we migrate our customers off our legacy networks; this year we switched off Featurenet – the first of eight networks targeted for closure – saving us approximately £1.8m per annum in run-rate energy costs.

Time horizon
Medium-term

Likelihood
Likely

Magnitude of impact
Low

Are you able to provide a potential financial impact figure?
Yes, a single figure estimate

Potential financial impact figure (currency)
27191150

Potential financial impact figure – minimum (currency)
<Not Applicable>

Potential financial impact figure – maximum (currency)
<Not Applicable>

Explanation of financial impact figure
The financial impact figure only relates to the cooling system programme; many of our energy efficiency measures are carried out as part of business-as-usual maintenance on a site-by-site basis, and so are not tracked separately.

The financial impact figure is also only the annual saving, not the saving for the whole lifetime of the units. The figure is the annual cost saving estimated for our cooling system upgrades, calculated by assessing the difference between the total energy cost of the legacy FADX cooling unit estate (8000 legacy FADX units x £4168/pa) and the total estimated energy cost of the Adiabatic estate (6050 Adiabatic units x £1017/pa). The number of Adiabatic units installed differs from the legacy units recovered due to operational efficiencies and re-assessment of site loads. Please note these are estimates based on individual unit tests; the UK-wide impact may vary depending on the fluctuating site loads and regional climate data.
Cost to realize opportunity
102000000

Strategy to realize opportunity and explanation of cost calculation
We have a long-standing energy management programme as part of our strategy to transform our operating model. This includes investments in cooling projects, plus measures such as removing legacy equipment.

Case study: adiabatic cooling
Climate change-related temperature increases and heatwaves, combined with the need for ever-increasing amounts of data processing, increases cooling demand for our temperature-sensitive equipment. However, running more conventional air conditioning both increases electricity consumption and fugitive emissions of refrigerant gases.

We have invested £102m to upgrade more than 8,000 refrigerant based (DX) cooling systems to adiabatic units, which use water and fresh air instead of F-gas refrigerants. This investment includes a 3 year programme (FY19-21) to upgrade existing systems proactively, at a cost of more than £80m, and a programme focussed on End-of-Service-life equipment and new capacity growth, which in FY22 saw almost £22m invested.

The whole programme is expected to save 295 GWh of electricity each year, and avoids fugitive emissions. Our monitoring in 2021 has shown that adiabatic cooling outperforms conventional refrigerant and Fresh Air systems during the most extreme high temperatures (35°C and over) as the evaporative effect of the Adiabatic unit is maximised at these high ambient conditions. The variable speed fan technology deployed also avoids large temperature fluctuations and therefore is expected to extend equipment lifespans within the legacy network estate. Other benefits include less downtime for maintenance due to faster and cheaper repairs, and since no refrigerants are used this equipment will not need to comply with the UK’s F-gas phase-down regulatory requirements.

The Adiabatic cooling unit remains the unit of choice for new growth and End of Service Life replacement going forwards and will continue to be where conditions and equipment specifications allow.

Comment

C3. Business Strategy

C3.1

(C3.1) Does your organization’s strategy include a transition plan that aligns with a 1.5°C world?

Row 1

Transition plan
Yes, we have a transition plan which aligns with a 1.5°C world

Publicly available transition plan
Yes

Mechanism by which feedback is collected from shareholders on your transition plan
We have a different feedback mechanism in place

Description of feedback mechanism
Our sustainability & corporate affairs strategy director meets regularly with stakeholders to discuss BT’s carbon targets, enabling shareholders, customers and colleagues (amongst other stakeholders) to review our approach and progress. Over 700 stakeholders attended the launch of the BT Group Manifesto in December 2021, where we presented our overarching targets on Carbon Abatement and Circular Economy, in addition to our accelerated target to reach net zero in our operations by end of March 2031 and e2e (including supply chain and customer use of products) by end of March 2041. Some of the views expressed by financial analysts at the launch are presented in our BT Group Manifesto Report.

We are now conducting sessions with shareholders to get their input into the revision process for our transition plans, to incorporate these new targets and other changes to our approach, and a BT Group Manifesto briefing for shareholders and investors is planned during FY23. In November 2021, the UK Government announced that it will be mandating large companies to publish carbon transition plans, and will be publishing framework criteria that these plans should follow. BT will publish its updated transition plan once these requirements have been clarified. BT is also part of the Transition Plan Taskforce Sandbox Initiative to roadtest the new climate transition reporting framework in Autumn 2022.

BT has been recognised by WWF as one of three companies in the FTSE100 to meet WWF’s scorecard criteria on net zero disclosure (wwf.org.uk/sites/default/files/2021-10/Net_zero_scorecard_report_0.pdf).

Frequency of feedback collection
More frequently than annually

Attach any relevant documents which detail your transition plan (optional)
BT publishes a Carbon Reduction Plan, which highlights the key areas for reducing BT’s carbon footprint. Also attached are our Manifesto, Manifesto Report, relevant sections from our Annual Report, and an example of the new roles being created to deliver our Manifesto.

New roles and responsibility- example.pptx
2022-bt-strategic-report.pdf
bt-manifesto.pdf
bt-carbon-reduction-plan.pdf
2022-manifesto-report.pdf

Explain why your organization does not have a transition plan that aligns with a 1.5°C world and any plans to develop one in the future
<Not Applicable>

Explain why climate-related risks and opportunities have not influenced your strategy
<Not Applicable>
(C3.2) Does your organization use climate-related scenario analysis to inform its strategy?

<table>
<thead>
<tr>
<th>Use of climate-related scenario analysis to inform strategy</th>
<th>Primary reason why your organization does not use climate-related scenario analysis to inform its strategy</th>
<th>Explain why your organization does not use climate-related scenario analysis to inform its strategy and any plans to use it in the future</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes, qualitative and quantitative</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
</tbody>
</table>

(C3.2a) Provide details of your organization’s use of climate-related scenario analysis.

<table>
<thead>
<tr>
<th>Climate-related scenario</th>
<th>Scenario analysis coverage</th>
<th>Temperature alignment of scenario</th>
<th>Parameters, assumptions, analytical choices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transition scenarios</td>
<td>Customized publicly available scenario analysis</td>
<td>Company-wide</td>
<td>1.5°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Used as a “What if” transition scenario</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Carbon price £86 / tCO2 by 2030 ($110)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Source: NGFS 1.5°C Orderly immediate transition, with CDR)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Carbon price £274 / tCO2 by 2050 ($350)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Source: NGFS 1.5°C Orderly immediate transition, with CDR)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ban of sale of new petrol/diesel vehicles (car/van) by 2030</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Source: UK government current policy)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60TWh uncontracted low-carbon generation required by 2030</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Innovation will cause this gap to be closed by 2050 for the UK to be in line with their net-zero commitment</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Company-wide</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BT’s core transition scenario, used to inform planning (given BT's Paris aligned net-zero commitment and TCFD recommendation to consider a 2 degree scenario or lower).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Carbon price £50 / tCO2 by 2030 ($64)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Source: NGFS 2°C Orderly immediate transition, with CDR)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Carbon price £160 / tCO2 by 2050 ($204)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Source: NGFS 2°C Orderly immediate transition, with CDR)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ban of sale of new petrol/diesel vehicles (car/van) by 2030</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Source: UK government current policy)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60TWh uncontracted low-carbon generation required by 2030</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Innovation will cause the renewable energy gap to be closed by 2050 for the UK to be in line with net-zero commitment</td>
</tr>
<tr>
<td>Physical climate scenarios</td>
<td>RCP 8.5</td>
<td>Company-wide</td>
<td><Not Applicable></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BT’s core physical scenario.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Carbon price £13 / tCO2 by 2030 ($17)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Source: NGFS Delayed and disorderly 2°C, with CDR)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Carbon price £200 / tCO2 by 2050 ($256)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Source: NGFS Delayed and disorderly 2°C, with CDR)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ban of sale of new petrol/diesel vehicles (car/van) by 2030</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Source: UK government current policy)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>No renewable energy gap in 2030.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60TWh uncontracted low-carbon generation required - assumption that delay will lead to 2050 gap.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Source: CCC Progress report 2019)</td>
</tr>
<tr>
<td>Physical climate scenarios</td>
<td>RCP 4.5</td>
<td>Company-wide</td>
<td><Not Applicable></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Used as a “What if” scenario for physical risks.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Carbon price £13 / tCO2 by 2030 ($17)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Source: NGFS Hot House World, with CDR)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Carbon price £274 / tCO2 by 2050 ($350)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Source: NGFS Hot House World, with CDR)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ban of sale of new petrol/diesel vehicles (car/van) by 2030</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Source: UK government current policy)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>No renewable energy gap in 2030</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>No renewable energy gap in 2050</td>
</tr>
</tbody>
</table>

(C3.2b)
(C3.2b) Provide details of the focal questions your organization seeks to address by using climate-related scenario analysis, and summarize the results with respect to these questions.

Row 1

Focal questions
Our analysis looked at the following focal questions:

Question 1: Understanding the physical risks that could impact BT’s 150 business critical sites in the UK for flooding and BT’s UK estate for cooling. This work was later expanded to consider flood risk at 1100 strategic sites.

Question 2: Understanding the physical risks that could impact BT’s top 50 global direct operational sites by energy use and key suppliers of branded products.

Question 3: Understanding the potential impacts to BT of interventions designed to transition society to a low carbon economy.

Rationale for scenarios
The original analysis considered potential impacts to BT in 2030 and 2050 under a 1.5, 2, 3 and 4°C scenario. These were chosen because:

- The latest guidance from the TCFD on scenario analysis issued in November 2020 asks companies to consider a <2°C and a minimum of 3 scenarios.
- The 1.5C and <2C scenarios are in line with the Paris Agreement’s stated 2°C limit/1.5°C aim. This scenario aligns with BT’s net zero target and is required for transition risk planning under TCFD recommendations. The 1.5C scenario is used as a “What if” transition scenario.
- The 2-3°C scenario, characterised by a delayed and disorderly transition leading to notable physical impacts, is BT’s “most likely” view of future warming, used for planning purposes with respect to physical risks, and used as a “What if” scenario for transition risks.
- The 4°C scenario, characterised by business as usual emissions and extreme warming, is used as a “What if” physical scenario.

With respect to Question 1, focusing on flood risk in the UK, we expanded the original work (which looked at 1-in-100 and 1-in-500 year events, and river and coastal flooding) to consider 1-in-30 and 1-in-50 year fluvial, coastal and pluvial flood events that could affect 1,100 strategic sites. The scenario analysis models the impacts depending on whether a site was defended by flood barriers or not. RCP 2.6, 4.5 6 and 8.5 scenarios are considered, and three epochs: 2020s, 2050s and 2080s.

Results of the climate-related scenario analysis with respect to the focal questions

Question 1: the analysis identified potential costs to BT in 2030 and 2050 from increased river and coastal flooding and increased temperatures in the UK. Costs related to flood damage, increased cooling demand, customer disruption, maintenance costs and deployment of the ERT.

The potential financial impacts of flooding are not currently deemed to be material due to the protection afforded by our £6m Strategic Flood Programme. In FY22, a pilot study of 27 sites identified those that could be vulnerable if several types of flooding (pluvial, fluvial, coastal) combined in a “perfect storm” event. The results will inform mitigation and maintenance activities, and our future location strategy.

The analysis found that higher UK temperatures should not materially affect our operational costs as BT has mitigated this risk through our cooling system upgrades. In FY22, we looked at all UK sites plus key global locations, to model the number of days per year exceeding 35 and 38°C in 2030, 2040 and 2050. The increase in the number of days was not found to be hugely significant. In FY23, we will analyse equipment fault history using the modelled future temperature data, to identify if any actions are needed.

Question 2: the analysis identified BT sites in India and the US East Coast as the most at risk from a range of physical impacts. BT’s data centre in Gurgaon could exceed 38°C for 57.4 days a year in 2030 under a 4°C scenario, potentially requiring more maintenance and cooling to prevent equipment failure. The analysis will help inform the selection of future sites, and the introduction of strengthened mitigation measures and contingency plans in high risk territories.

The analysis found that the China-based part of BT’s supply chain poses the greatest risk of disruption to BT. Most of our products’ raw material suppliers are concentrated in China, which is vulnerable to flooding and typhoons. This is a shared concern across our whole sector. The climate risk outcomes have been incorporated into the existing supply chain risk monitoring system. Our monitoring tools can track the potential impact of risks up to four tiers down in our supply chain, and alert our supplier teams. Next steps include improving our understanding of key supplier locations to better pinpoint the risk.

Question 3: the analysis identified few potentially material impacts on BT, although carbon pricing could be significant by 2030 under a 2°C scenario, if BT’s supply chain emissions targets are not met, given the size of our scope 3 emissions. This would occur if suppliers passed on carbon pricing costs to their customers. For example, China has announced plans for carbon neutrality before 2060, with a five-year plan to drive progress towards this goal. Since many of our industry’s raw materials suppliers are based in China, this could have implications for scope 3 carbon pricing risks, affecting the whole industry. We will keep monitoring policy and regulation changes.
(C3.3) Describe where and how climate-related risks and opportunities have influenced your strategy.

<table>
<thead>
<tr>
<th>Have climate-related risks and opportunities influenced your strategy in this area?</th>
<th>Description of influence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Products and services</td>
<td>Yes</td>
</tr>
<tr>
<td>Supply chain and/or value chain</td>
<td>Yes</td>
</tr>
<tr>
<td>Investment in R&D</td>
<td>Yes</td>
</tr>
<tr>
<td>Operations</td>
<td>Yes</td>
</tr>
</tbody>
</table>

(C3.4) Describe where and how climate-related risks and opportunities have influenced your financial planning.

<table>
<thead>
<tr>
<th>Financial planning elements that have been influenced</th>
<th>Description of influence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1 Indirect Capital expenditures Assets</td>
<td>We have pledged to become a net zero carbon emissions business by 2031. In the long-term we plan to meet this target through the purchase of renewables, converting the majority of our vehicle fleet to ultra-low emissions vehicles and to continue to decarbonise our buildings. The investments needed to support our net zero ambition are factored into our Medium-Term Planning (MTP). Our MTP considers both capital expenditure (CAPEX) and operating (indirect) costs (OPEX) over a rolling five year timeframe. Our Better Workplace Programme is a 5-year programme to consolidate our UK buildings footprint to around 30 modern, future-fit locations (from around 270 office buildings). New build locations will need to have either BREEAM Excellent certification or be ASLL1 certified. We are currently working towards BREEAM Excellent certification for our new locations in London, Birmingham, Bristol, Dundee & Manchester. For buildings that we are planning to retain, largely exchange buildings, we are looking to decarbonise the current oil and gas heating systems. We are working to identify the best low-carbon, cost-effective, solutions to replace/upgrade these systems. Options include low carbon technology, e.g. heat pumps and alternatives to natural gas than to renewable electricity. At our 16,000 square metre Doncaster contact centre, first opened in 1997, we replaced the old chilled water cooling and gas fired boilers with a new electric system in 2020. This is expected to save 100 tonnes of carbon each year. BT and Openreach have the UK’s second largest commercial fleet. Our 33,000 vehicles make up around 70% of our direct operational emissions (scope 1). We’re aiming to switch the majority of our fleet to run on electric (EV) and alternative fuels (such as hydrogen) by 2030. Openreach had more than 1000 EVs as of March 2022. Those BT colleagues that have a company car as part of their contractual benefit have had the option to choose fully electric cars since FY19. Colleagues who require a vehicle to undertake their role (excluding engineers), from April 2021, will have a choice of 6 fully electric and 4 hybrid electric cars. We continually invest in our network and exchanges to maintain our operational resilience and ensure we have the best network infrastructure in the UK, which is key to delivering market-leading customer experience. Some of this equipment has a lifetime of 20 years or more, so we plan with a long-term view. Severe weather causing fluvial, coastal and pluvial flooding, excess wind, snow, ice and electrical storms can disrupt our operations in affected areas. The most substantive strategic decision related to this area is our investment in enhanced resilience to such climate-related risks; we’ve mapped our UK sites at highest risk of flooding and invested in flood defences. We have developed plans to introduce electric and other zero emission vehicles into our fleet.</td>
</tr>
</tbody>
</table>
C3.5a

(C3.5a) Quantify the percentage share of your spending/revenue that is aligned with your organization’s transition to a 1.5°C world.

<table>
<thead>
<tr>
<th>Financial Metric</th>
<th>Revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage share of selected financial metric aligned with a 1.5°C world in the reporting year (%)</td>
<td>25</td>
</tr>
<tr>
<td>Percentage share of selected financial metric planned to align with a 1.5°C world in 2025 (%)</td>
<td></td>
</tr>
<tr>
<td>Percentage share of selected financial metric planned to align with a 1.5°C world in 2030 (%)</td>
<td></td>
</tr>
</tbody>
</table>

Describe the methodology used to identify spending/revenue that is aligned with a 1.5°C world

Carbon-cutting solutions already make up around 25% of our revenue – £5bn this year alone. For each BT proposition with a potential carbon saving, the saving per unit (e.g. per number of vehicles removed, number of users, etc.) was derived from either an external study, an internal BT study, or documented expert assumptions.

This analysis was based on our previous definition of carbon-reducing solutions. We are currently developing use cases to measure and report against our new carbon abatement target based on refined definitions of carbon-reducing solutions.

C3.5a

<table>
<thead>
<tr>
<th>Financial Metric</th>
<th>CAPEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage share of selected financial metric aligned with a 1.5°C world in the reporting year (%)</td>
<td>20</td>
</tr>
<tr>
<td>Percentage share of selected financial metric planned to align with a 1.5°C world in 2025 (%)</td>
<td></td>
</tr>
<tr>
<td>Percentage share of selected financial metric planned to align with a 1.5°C world in 2030 (%)</td>
<td></td>
</tr>
</tbody>
</table>

Describe the methodology used to identify spending/revenue that is aligned with a 1.5°C world

This is a broad estimate; we have included in our estimation costs for the FTTP build, electric vehicle charging infrastructure, and similar 1.5C-aligned investments clearly linked to the 1.5C world.

C4. Targets and performance

C4.1

(C4.1) Did you have an emissions target that was active in the reporting year?

Absolute target

Intensity target

C4.1a

(C4.1a) Provide details of your absolute emissions target(s) and progress made against those targets.

<table>
<thead>
<tr>
<th>Target reference number</th>
<th>Abs 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year target was set</td>
<td>2017</td>
</tr>
<tr>
<td>Target coverage</td>
<td>Company-wide</td>
</tr>
<tr>
<td>Scope(s)</td>
<td>Scope 3</td>
</tr>
<tr>
<td>Scope 2 accounting method</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Scope 3 category(ies)</td>
<td>Category 1: Purchased goods and services</td>
</tr>
<tr>
<td></td>
<td>Category 2: Capital goods</td>
</tr>
<tr>
<td></td>
<td>Category 3: Fuel-and-energy-related activities (not included in Scopes 1 or 2)</td>
</tr>
<tr>
<td></td>
<td>Category 4: Upstream transportation and distribution</td>
</tr>
<tr>
<td></td>
<td>Category 5: Waste generated in operations</td>
</tr>
<tr>
<td></td>
<td>Category 6: Business travel</td>
</tr>
<tr>
<td></td>
<td>Category 7: Employee commuting</td>
</tr>
<tr>
<td></td>
<td>Category 8: Upstream leased assets</td>
</tr>
<tr>
<td>Base year</td>
<td>2017</td>
</tr>
<tr>
<td>Base year Scope 1 emissions covered by target (metric tons CO2e)</td>
<td></td>
</tr>
</tbody>
</table>
Base year Scope 2 emissions covered by target (metric tons CO2e)
<Not Applicable>

Base year Scope 3 emissions covered by target (metric tons CO2e)
3217348

Total base year emissions covered by target in all selected Scopes (metric tons CO2e)
3217348

Base year Scope 1 emissions covered by target as % of total base year emissions in Scope 1
<Not Applicable>

Base year Scope 2 emissions covered by target as % of total base year emissions in Scope 2
<Not Applicable>

Base year Scope 3 emissions covered by target as % of total base year emissions in Scope 3 (in all Scope 3 categories)
77

Base year emissions covered by target in all selected Scopes as % of total base year emissions in all selected Scopes
70

Target year
2031

Targeted reduction from base year (%)
42

Total emissions in target year covered by target in all selected Scopes (metric tons CO2e) [auto-calculated]
1866061.84

Scope 1 emissions in reporting year covered by target (metric tons CO2e)
<Not Applicable>

Scope 2 emissions in reporting year covered by target (metric tons CO2e)
<Not Applicable>

Scope 3 emissions in reporting year covered by target (metric tons CO2e)
2318342

Total emissions in reporting year covered by target in all selected scopes (metric tons CO2e)
2318342

% of target achieved relative to base year [auto-calculated]
66.5296534969321

Target status in reporting year
Underway

Is this a science-based target?
Yes, and this target has been approved by the Science Based Targets initiative

Target ambition
1.5°C aligned

Please explain target coverage and identify any exclusions
Our target is to reduce the carbon emissions associated with our supply chain (GHGP Corporate Value Chain (Scope 3) Accounting and Reporting Standard categories 1 through 8) by 42% by 31 March 2031 against a 2017 baseline. This target was revised in June 2020 from a 29% reduction to a 42% reduction, in line with 1.5°C scenarios.

Plan for achieving target, and progress made to the end of the reporting year
We have cut our supplier carbon emissions by 28% since FY17 by continuing to work with suppliers and supporting small businesses to set net zero targets. All suppliers must meet our standard on climate change and we track compliance through supplier assessments. We’ve introduced pioneering climate clauses into some key supplier contracts to encourage carbon emissions reductions in our supply chain, as part of our pathway to net zero by 2041. For all new contracts worth over £25m, we’ve introduced a requirement for suppliers to have a net zero science-based target in place or commit to having one within six months. In FY22, we set a net zero target for our supplier and customer emissions by the end of March 2041.

List the emissions reduction initiatives which contributed most to achieving this target
<Not Applicable>

CCA.1b

(C4.1b) Provide details of your emissions intensity target(s) and progress made against those target(s).

Target reference number
Int 1

Year target was set
2017

Target coverage
Company-wide

Scope(s)
Scope 1
Scope 2

Scope 2 accounting method
Market-based

Scope 3 category(ies)
<Not Applicable>

Intensity metric
Other, please specify (Metric tons CO2e per GBP (£) value-added)

Base year
2017

Intensity figure in base year for Scope 1 (metric tons CO2e per unit of activity)
14.17

Intensity figure in base year for Scope 2 (metric tons CO2e per unit of activity)
17.37

Intensity figure in base year for Scope 3 (metric tons CO2e per unit of activity)
<Not Applicable>

Intensity figure in base year for all selected Scopes (metric tons CO2e per unit of activity)
32

% of total base year emissions in Scope 1 covered by this Scope 1 intensity figure
100

% of total base year emissions in Scope 2 covered by this Scope 2 intensity figure
100

% of total base year emissions in Scope 3 (in all Scope 3 categories) covered by this Scope 3 intensity figure
<Not Applicable>

% of total base year emissions in all selected Scopes covered by this intensity figure
100

Target year
2031

Targeted reduction from base year (%)
87

Intensity figure in target year for all selected Scopes (metric tons CO2e per unit of activity) [auto-calculated]
4.16

% change anticipated in absolute Scope 1+2 emissions
-87

% change anticipated in absolute Scope 3 emissions
0

Intensity figure in reporting year for Scope 1 (metric tons CO2e per unit of activity)
14.28

Intensity figure in reporting year for Scope 2 (metric tons CO2e per unit of activity)
0.012

Intensity figure in reporting year for Scope 3 (metric tons CO2e per unit of activity)
<Not Applicable>

Intensity figure in reporting year for all selected Scopes (metric tons CO2e per unit of activity)
14

% of target achieved relative to base year [auto-calculated]
64.6551724137931

Target status in reporting year
Underway

Is this a science-based target?
Yes, and this target has been approved by the Science Based Targets initiative

Target ambition
1.5°C aligned

Please explain target coverage and identify any exclusions
Our target is to reduce our carbon emissions intensity by 87% on 2016/17 levels by 31 March 2031. This is in line with current international policy and climate science, being BT's share of the global emissions reductions needed to limit global warming to 1.5°C.

The carbon emissions intensity relates to Scope 1 and 2 greenhouse gas emissions, as defined in the World Business Council for Sustainable Development (WBCSD) and World Resources Institute (WRI)’s Greenhouse Gas Protocol, expressed as carbon dioxide equivalent (CO2e) per unit of value added (EBITDA + employee costs).

The targeted percentage change in absolute emissions has been calculated using the forecast value added growth used in our medium term planning.

Plan for achieving target, and progress made to the end of the reporting year
Since FY17 we’ve cut our carbon emissions intensity by 55% – slightly down on last year’s 57%, as a result of the rebound effect from the pandemic and an increase in vehicle emissions to support our full fibre rollout. These reductions have been achieved by purchasing 100% renewable electricity, introducing more electric vehicles to our fleet and decarbonising our buildings.

List the emissions reduction initiatives which contributed most to achieving this target
<Not Applicable>
C4.2

(C4.2) Did you have any other climate-related targets that were active in the reporting year?

Target(s) to increase low-carbon energy consumption or production
Net-zero target(s)

C4.2a

(C4.2a) Provide details of your target(s) to increase low-carbon energy consumption or production.

Target reference number
Low 1

Year target was set
2015

Target coverage
Company-wide

Target type: energy carrier
Electricity

Target type: activity
Consumption

Target type: energy source
Renewable energy source(s) only

Base year
2015

Consumption or production of selected energy carrier in base year (MWh)
2847

% share of low-carbon or renewable energy in base year
75

Target year
2020

% share of low-carbon or renewable energy in target year
100

% share of low-carbon or renewable energy in reporting year
100

% of target achieved relative to base year [auto-calculated]
100

Target status in reporting year
Achieved

Is this target part of an emissions target?
Yes

Is this target part of an overarching initiative?
RE100

Please explain target coverage and identify any exclusions
BT is one of the largest consumers of electricity in the UK. In November 2020 we achieved our target to use 100% renewable electricity worldwide. 99.9% of the global electricity BT sources is renewable. The remaining 0.1% represents where markets don’t allow such sourcing due to non-availability of renewable electricity (this represents 8 countries from the 85 BT Group has operations in).

Plan for achieving target, and progress made to the end of the reporting year
<Not Applicable>

List the actions which contributed most to achieving this target
Our target is now to maintain the purchase of 100% of our electricity from renewable sources, where markets allow; in FY22, we achieved this target. In FY22, we consumed 2222GWh of renewable electricity purchased from the supplier, and 90GWh of renewable electricity backed by purchases of unbundled energy attribute certificates.
(C4.2c) Provide details of your net-zero target(s).

Target reference number
NZ1

Target coverage
Company-wide

Absolute/intensity emission target(s) linked to this net-zero target
Int1

Target year for achieving net zero
2031

Is this a science-based target?
Yes, and this target has been approved by the Science Based Targets initiative

Please explain target coverage and identify any exclusions
This includes 100% of our scope 1 and 2 emissions.

Do you intend to neutralize any unabated emissions with permanent carbon removals at the target year?
Unsure

Planned milestones and/or near-term investments for neutralization at target year
<Not Applicable>

Planned actions to mitigate emissions beyond your value chain (optional)
Delivering against this ambition is dependent on external factors including the availability of suitable low carbon vehicles and electric vehicle charging infrastructure, and of viable options to heat our buildings. As our investigations and plans develop we will be in a better position to ascertain whether some form of carbon offsetting will be required to achieve net zero.

Target reference number
NZ2

Target coverage
Company-wide

Absolute/intensity emission target(s) linked to this net-zero target
Abs1

Target year for achieving net zero
2041

Is this a science-based target?
Yes, and this target has been approved by the Science Based Targets initiative

Please explain target coverage and identify any exclusions
In FY22 we brought the deadline for this target forward and extended it to include our downstream as well as our upstream scope 3 emissions. Our target is now to be net zero for our supply chain and customer carbon emissions by 31 March 2041. The target covers 100% of GHGP Corporate Value Chain (Scope 3) Accounting and Reporting Standard categories 1-8, 11 and 12.

Do you intend to neutralize any unabated emissions with permanent carbon removals at the target year?
Unsure

Planned milestones and/or near-term investments for neutralization at target year
<Not Applicable>

Planned actions to mitigate emissions beyond your value chain (optional)
As our investigations and plans develop we will be in a better position to ascertain whether some form of carbon offsetting will be required to achieve net zero.

C4.3

(C4.3) Did you have emissions reduction initiatives that were active within the reporting year? Note that this can include those in the planning and/or implementation phases.
Yes

C4.3a

(C4.3a) Identify the total number of initiatives at each stage of development, and for those in the implementation stages, the estimated CO2e savings.

<table>
<thead>
<tr>
<th>Number of initiatives</th>
<th>Total estimated annual CO2e savings in metric tonnes CO2e (only for rows marked *)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under investigation</td>
<td>0</td>
</tr>
<tr>
<td>To be implemented*</td>
<td>0</td>
</tr>
<tr>
<td>Implementation commenced*</td>
<td>1</td>
</tr>
<tr>
<td>Implemented*</td>
<td>4</td>
</tr>
<tr>
<td>Not to be implemented</td>
<td>0</td>
</tr>
</tbody>
</table>

C4.3b
(C4.3b) Provide details on the initiatives implemented in the reporting year in the table below.

Initiative category & Initiative type

<table>
<thead>
<tr>
<th>Initiative category & Initiative type</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-carbon energy consumption</td>
<td>Low-carbon electricity mix</td>
</tr>
</tbody>
</table>

Estimated annual CO2e savings (metric tonnes CO2e)
81423

Scope(s) or Scope 3 category(ies) where emissions savings occur
Scope 2 (market-based)

Voluntary/Mandatory
Voluntary

Annual monetary savings (unit currency – as specified in C0.4)
0

Investment required (unit currency – as specified in C0.4)
1000000

Payback period
No payback

Estimated lifetime of the initiative
Ongoing

Comment
We have committed to procure 100% of electricity from renewable sources, as part of the We Mean Business coalition and RE100. Since November 2020, we have achieved our goal of 100% renewable electricity sourcing. 99.9% of the global electricity BT sources is renewable. The remaining 0.1% represents where markets don't allow such sourcing due to non-availability of renewable electricity (4 countries out of 80). Although we do buy Energy Attribute Certificates (EACs) for this usage in neighbouring markets, we do not count this as a carbon reduction in our Scope 2 (market-based) figures.

The annual carbon saving reflects the emissions that were avoided through the purchase of additional unbundled renewable electricity certificates to cover all our electricity usage (we were already purchasing green electricity backed by EACs through our energy suppliers where possible). The cost figure reflects these purchases, plus sourcing of further EACs equivalent to our use of stationary diesel generators.

Our spend on energy procurement is confidential; the investment required figure is indicative only.

Initiative category & Initiative type

<table>
<thead>
<tr>
<th>Initiative category & Initiative type</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Transportation</td>
<td>Company fleet vehicle replacement</td>
</tr>
</tbody>
</table>

Estimated annual CO2e savings (metric tonnes CO2e)
1380

Scope(s) or Scope 3 category(ies) where emissions savings occur
Scope 1

Voluntary/Mandatory
Voluntary

Annual monetary savings (unit currency – as specified in C0.4)
0

Investment required (unit currency – as specified in C0.4)
0

Payback period
No payback

Estimated lifetime of the initiative
Ongoing

Comment
Our fleet makes up around 70% of BT’s operational emissions. Openreach runs one of the country’s largest commercial fleets, and has committed to switch from diesel to an all electric fleet by 2030. Openreach has acquired 700 electric vehicles in FY22, bringing the total electric fleet to more than 1000. We’ve increased the number of charging points at our sites and provided over 600 units for engineers to charge their vehicles at home. This project is being undertaken as a business-as-usual upgrade of older vehicles, and so we have quoted no additional monetary savings nor investment costs. We estimate the carbon saved in FY22 through using these vehicles, compared to their diesel equivalent, was 1380 tonnes CO2e (N.B. some of the vehicles were introduced part way through the year, so the saving only reflects a fraction of the annual usage).

Initiative category & Initiative type

<table>
<thead>
<tr>
<th>Initiative category & Initiative type</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy efficiency in buildings</td>
<td>Heating, Ventilation and Air Conditioning (HVAC)</td>
</tr>
</tbody>
</table>

Estimated annual CO2e savings (metric tonnes CO2e)
298

Scope(s) or Scope 3 category(ies) where emissions savings occur
Scope 1
Voluntary/Mandatory
Voluntary

Annual monetary savings (unit currency – as specified in C0.4)
0

Investment required (unit currency – as specified in C0.4)
0

Payback period
No payback

Estimated lifetime of the initiative
16-20 years

Comment
Our Infrastructure Investment Programme upgrades newly acquired and redeveloped buildings as part of Better Workplace Programme.

In FY22, we completed the fit out of three newly acquired buildings: our Three Snow Hill office, our Warrington contact centre, and our new HQ at One Braham. Opting for electric instead of gas for the main heating at these buildings will save approximately 298 tonnes of CO2e per year. Additionally, the use of diesel-powered back-up generators has been restricted to life safety systems only. Since all three of these buildings required a new heating system, and electrical heating was the only option considered for these sites due to BT’s carbon targets, we do not consider that these projects required any additional investment to obtain a greener solution.

We do not attribute any immediate savings to these investments, though they are expected to contribute to lower fossil fuel usage and help to underpin BT’s decarbonisation goals, as well as mitigating risk.

Initiative category & Initiative type

<table>
<thead>
<tr>
<th>Initiative category & Initiative type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy efficiency in buildings</td>
</tr>
<tr>
<td>Heating, Ventilation and Air Conditioning (HVAC)</td>
</tr>
</tbody>
</table>

Estimated annual CO2e savings (metric tonnes CO2e)
600

Scope(s) or Scope 3 category(ies) where emissions savings occur
Scope 1

Voluntary/Mandatory
Voluntary

Annual monetary savings (unit currency – as specified in C0.4)
0

Investment required (unit currency – as specified in C0.4)
0

Payback period
No payback

Estimated lifetime of the initiative
16-20 years

Comment
Our Infrastructure Investment Programme refurbishes existing estate as part of Better Workplace Programme.

Since 2019, we have replaced conventional gas or oil-fired heating at 58 telephone exchanges (31 in FY22) and 4 contact centres with electric heating. These projects will save approximately 600 tonnes of carbon per annum by the end of 2022. This work is completed as part of business-as-usual replacement of old systems. For example, at our large High Wycombe exchange, we replaced the old oil-fired boiler with electric heating and air source heat pumps. This project will reduce emissions by 178 tonnes of carbon per annum, and has improved the thermal comfort for our colleagues.

We do not attribute any immediate savings to these investments, though they are expected to contribute to lower fossil fuel usage and help to underpin BT’s decarbonisation goals, as well as mitigating risk.

C4.3c

(C4.3c) What methods do you use to drive investment in emissions reduction activities?

<table>
<thead>
<tr>
<th>Method</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dedicated budget for energy efficiency</td>
<td></td>
</tr>
</tbody>
</table>

C4.5

(C4.5) Do you classify any of your existing goods and/or services as low-carbon products?
Yes
(C4.5a) Provide details of your products and/or services that you classify as low-carbon products.

Level of aggregation
Group of products or services

Taxonomy used to classify product(s) or service(s) as low-carbon
No taxonomy used to classify product(s) or service(s) as low carbon

Type of product(s) or service(s)
Other, Other, please specify (Carbon-saving communications technology)

Description of product(s) or service(s)
Our networks and solutions can help our customers cut carbon emissions. These include products and services that: 1) reduce the need for travel (e.g. Connectivity enabled products and services such as, audio, video and web-based conferencing, collaborative applications, M2M and telematics solutions such as Auto Mate and remote network performance monitoring as part of Managed Services); 2) reduce energy usage (our broadband, ethernet and cloud-based services such as co-location or public cloud connectivity all help to reduce energy use); and 3) reduce materials and manufacturing needs (M2M and telematics helping reduce energy use, mobility and connectivity solutions reducing need for handsets). We’ve set a new target to help customers avoid 60 million tonnes of CO2-equivalent (CO2e) by the end of March 2030.

Have you estimated the avoided emissions of this low-carbon product(s) or service(s)
Yes

Methodology used to calculate avoided emissions
Other, please specify (For each BT proposition with a potential carbon saving, the saving per unit (e.g. per number of vehicles removed, number of users, etc.) was derived from either an external study, an internal BT study, or documented expert assumptions.)

Life cycle stage(s) covered for the low-carbon product(s) or service(s)
Cradle-to-grave

Functional unit used
Given the diverse nature of BT’s products and services, functional units differed between products. For example, for Broadband enabled telecommuting, the unit of measurement is the number of telecommuters enabled by BT. For Data centre services, where there is a reduction in energy by moving from dedicated on site hosting to shared centralised hosting, the unit is the number of virtual machines.

Reference product/service or baseline scenario used
The carbon reduction factor is determined based on a comparison with an assumed “business as usual” (BAU) baseline or current practice from which abatement is determined. The BAU baseline assumption was, as much as possible, around the year 2012 when the goal was first set up. However, this is dependent on the date of any study that was used. For example, for Super-fast broadband enabled dematerialisation, the model used a baseline year of 2007.

Estimated avoided emissions (metric tons CO2e per functional unit) compared to reference product/service or baseline scenario
12800000

Overarching assumptions for all product types, include:
• The BAU baseline assumption was, as much as possible, around the year 2012.
• The energy mix for the electricity grid is updated annually (using the UK Government published factors) and is assumed to remain constant for the purposes of future projections.
• Other key factors, such as fuel efficiency of vehicles, are currently assumed to be static for the course of the analysis.
• For some propositions, the BT product or service is only partly responsible for the carbon abatement. In cases where some allocation to BT’s specific role was possible, this was performed.
• One critical concept present in any abatement calculation is the possibility of rebound effects. For example, in the case of telecommuting, consumers who work from home consume energy for heating and lighting of the home. In general, rebound was not explicitly considered, but it has been considered as part of some of the external studies used in the carbon factors.
• For products and services that have a multiple year contract, the carbon abatement is accounted for in each year of the contract rather than upfront in the year of signing of the contract. Beyond the end of the contract, no carbon abatement is credited to BT, as the approach is specifically considering the carbon savings of BT customers.

Revenue generated from low-carbon product(s) or service(s) as % of total revenue in the reporting year
25

C5. Emissions methodology

C5.1

(C5.1) Is this your first year of reporting emissions data to CDP?
No
C5.1a

(C5.1a) Has your organization undergone any structural changes in the reporting year, or are any previous structural changes being accounted for in this disclosure of emissions data?

Row 1

Has there been a structural change?
No

Name of organization(s) acquired, divested from, or merged with
<Not Applicable>

Details of structural change(s), including completion dates
<Not Applicable>

C5.1b

(C5.1b) Has your emissions accounting methodology, boundary, and/or reporting year definition changed in the reporting year?

<table>
<thead>
<tr>
<th>Change(s) in methodology, boundary, and/or reporting year definition?</th>
<th>Details of methodology, boundary, and/or reporting year definition change(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td><Not Applicable></td>
</tr>
</tbody>
</table>

C5.2

(C5.2) Provide your base year and base year emissions.

Scope 1

Base year start
April 1 2016

Base year end
March 31 2017

Base year emissions (metric tons CO2e)
181,903

Comment
Revised from 178,785 to 181,903 metric tons CO2e in 2019; the baseline has not been restated subsequently.

Scope 2 (location-based)

Base year start
April 1 2016

Base year end
March 31 2017

Base year emissions (metric tons CO2e)
1,167,025

Comment
Revised in 2020 from 1,147,666 to 1,167,025 metric tons CO2e to meet UK Streamlined Energy and Carbon Reporting requirements with respect to reporting boundaries; the baseline has not been restated subsequently.

Note: from 2019/20, and retrospectively updated back to 2016/17, our Scope 2 includes all sites and countries where we consume electricity, in compliance with the UK Government Streamlined Energy and Carbon Reporting (SECR) requirements. Where our actual consumption is unknown, mainly in landlord-controlled sites:
- for non-UK countries, we estimate consumption based on a combination of buildings, FTE and selective OPEX spend categories,
- for the UK, we estimate based mainly on average building type consumption or 3rd party supplier statements where available.
Scope 2 (market-based)

Base year start
April 1 2016

Base year end
March 31 2017

Base year emissions (metric tons CO2e)
228,878

Comment
Revised in 2020 from 221,932 to 222,878 metric tons CO2e to meet UK Streamlined Energy and Carbon Reporting requirements with respect to reporting boundaries; the baseline has not been restated subsequently.

Note: from 2019/20, and retrospectively updated back to 2016/17, our Scope 2 includes all sites and countries where we consume electricity, in compliance with the UK Government Streamlined Energy and Carbon Reporting (SECR) requirements. Where our actual consumption is unknown, mainly in landlord-controlled sites:
- for non-UK countries, we estimate consumption based on a combination of buildings, FTE and selective OPEX spend categories,
- for the UK, we estimate based mainly on average building type consumption or 3rd party supplier statements where available.

Scope 3 category 1: Purchased goods and services

Base year start
April 1 2016

Base year end
March 31 2017

Base year emissions (metric tons CO2e)
2,157,952

Comment
Every year the underlying EEIO model is updated to incorporate the most recent data and, where methodological improvements are made, these are retrofitted to the model for previous years so that a methodologically consistent time series can be maintained.

Scope 3 category 2: Capital goods

Base year start
April 1 2016

Base year end
March 31 2017

Base year emissions (metric tons CO2e)
471,795

Comment
Every year the underlying EEIO model is updated to incorporate the most recent data and, where methodological improvements are made, these are retrofitted to the model for previous years so that a methodologically consistent time series can be maintained.

Scope 3 category 3: Fuel-and-energy-related activities (not included in Scope 1 or 2)

Base year start
April 1 2016

Base year end
March 31 2017

Base year emissions (metric tons CO2e)
304,763

Comment
Every year the underlying EEIO model is updated to incorporate the most recent data and, where methodological improvements are made, these are retrofitted to the model for previous years so that a methodologically consistent time series can be maintained.

Scope 3 category 4: Upstream transportation and distribution

Base year start
April 1 2016

Base year end
March 31 2017

Base year emissions (metric tons CO2e)
114,356

Comment
Every year the underlying EEIO model is updated to incorporate the most recent data and, where methodological improvements are made, these are retrofitted to the model for previous years so that a methodologically consistent time series can be maintained.
Scope 3 category 5: Waste generated in operations

Base year start
April 1 2016

Base year end
March 31 2017

Base year emissions (metric tons CO2e)
5766

Comment
Every year the underlying EEIO model is updated to incorporate the most recent data and, where methodological improvements are made, these are retrofitted to the model for previous years so that a methodologically consistent time series can be maintained.

Scope 3 category 6: Business travel

Base year start
April 1 2016

Base year end
March 31 2017

Base year emissions (metric tons CO2e)
52124

Comment
Every year the underlying EEIO model is updated to incorporate the most recent data and, where methodological improvements are made, these are retrofitted to the model for previous years so that a methodologically consistent time series can be maintained.

Scope 3 category 7: Employee commuting

Base year start
April 1 2016

Base year end
March 31 2017

Base year emissions (metric tons CO2e)
60319

Comment
Every year the underlying EEIO model is updated to incorporate the most recent data and, where methodological improvements are made, these are retrofitted to the model for previous years so that a methodologically consistent time series can be maintained.

Scope 3 category 8: Upstream leased assets

Base year start
April 1 2016

Base year end
March 31 2017

Base year emissions (metric tons CO2e)
50273

Comment
Every year the underlying EEIO model is updated to incorporate the most recent data and, where methodological improvements are made, these are retrofitted to the model for previous years so that a methodologically consistent time series can be maintained.

Scope 3 category 9: Downstream transportation and distribution

Base year start

Base year end

Base year emissions (metric tons CO2e)

Comment
Not relevant

Scope 3 category 10: Processing of sold products

Base year start

Base year end

Base year emissions (metric tons CO2e)

Comment
Not relevant

Scope 3 category 11: Use of sold products

Base year start
April 1 2016

Base year end
March 31 2017

Base year emissions (metric tons CO2e)
962659

Comment
Scope 3 category 12: End of life treatment of sold products
Base year start
April 1 2016
Base year end
March 31 2017
Base year emissions (metric tons CO2e)
719
Comment
Scope 3 category 13: Downstream leased assets
Base year start
Base year end
Base year emissions (metric tons CO2e)
Comment
Scope 3 category 14: Franchises
Base year start
Base year end
Base year emissions (metric tons CO2e)
Comment
Scope 3 category 15: Investments
Base year start
Base year end
Base year emissions (metric tons CO2e)
Comment
Scope 3: Other (upstream)
Base year start
Base year end
Base year emissions (metric tons CO2e)
Comment
Scope 3: Other (downstream)
Base year start
Base year end
Base year emissions (metric tons CO2e)
Comment

C5.3
(C5.3) Select the name of the standard, protocol, or methodology you have used to collect activity data and calculate emissions.

C6. Emissions data

C6.1
(C6.1) What were your organization’s gross global Scope 1 emissions in metric tons CO2e?

Reporting year

Gross global Scope 1 emissions (metric tons CO2e)
180779

Start date
<Not Applicable>

End date
<Not Applicable>

Comment
We have chosen to purchase additional Energy Attribute Certificates (EACs) equivalent to our use of electricity produced by standby generators. These purchases are not reflected in our scope 1 reporting, but are included under C8.2d in the figure for gross generation (of electricity) from renewable sources (MWh).

C6.2

(C6.2) Describe your organization’s approach to reporting Scope 2 emissions.

Row 1

Scope 2, location-based
We are reporting a Scope 2, location-based figure

Scope 2, market-based
We are reporting a Scope 2, market-based figure

Comment
Note: In compliance with new UK government Streamlined Energy and Carbon Reporting (SECR) requirements, retrospectively updated back to FY17, our Scope 2 includes all sites and countries where we consume electricity.

Where our actual consumption is unknown (mainly in landlord-controlled sites) for:
- non-UK countries: we estimate consumption based on a combination of buildings, FTE and selective OPEX spend categories,
- UK: figures are based mainly on average consumption for the building type; data from third party supplier statements are used where available.

C6.3

(C6.3) What were your organization’s gross global Scope 2 emissions in metric tons CO2e?

Reporting year

Scope 2, location-based
554243

Scope 2, market-based (if applicable)
155

Start date
<Not Applicable>

End date
<Not Applicable>

Comment

C6.4

(C6.4) Are there any sources (e.g., facilities, specific GHGs, activities, geographies, etc.) of Scope 1 and Scope 2 emissions that are within your selected reporting boundary which are not included in your disclosure?

No

C6.5

(C6.5) Account for your organization’s gross global Scope 3 emissions, disclosing and explaining any exclusions.
Purchased goods and services

Evaluation status
Relevant, calculated

Emissions in reporting year (metric tons CO2e)
1756000

Emissions calculation methodology
Supplier-specific method
Hybrid method
Spend-based method

Percentage of emissions calculated using data obtained from suppliers or value chain partners
6.9

Please explain
BT has used Environmentally Extended Economic Input Output analysis based on BT spend data. This is captured in our model as the category boundary for extraction, production and transport of purchased goods and services acquired or purchased by the reporting company in the reported year. Where suppliers’ scope 1 and 2 emissions intensities have been reported to the CDP, these have been used to refine the analysis. In addition, for suppliers who have carried out Process Based Lifecycle Analysis (PBLCA) on their products, these results have been substituted into the model where relevant. Further information is available at bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology.

Capital goods

Evaluation status
Relevant, calculated

Emissions in reporting year (metric tons CO2e)
300000

Emissions calculation methodology
Supplier-specific method
Spend-based method

Percentage of emissions calculated using data obtained from suppliers or value chain partners
4.8

Please explain
BT has used Environmentally Extended Economic Input Output analysis based on BT spend data. This is captured in our model as the category boundary for extraction, production and transport of capital goods acquired or purchased by the reporting company in the reported year. Where suppliers’ scope 1 and 2 emissions intensities have been reported to the CDP, these have been used to refine the analysis. It should be noted that the Scope 3 emissions arising from the purchase of fleet capital goods, such as vans or lorries, are not currently reported to the CDP, these have been used to refine the analysis. In addition, for suppliers who have carried out Process Based Lifecycle Analysis (PBLCA) on their products, these results have been substituted into the model where relevant. Further information is available at bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology.

Fuel-and-energy-related activities (not included in Scope 1 or 2)

Evaluation status
Relevant, calculated

Emissions in reporting year (metric tons CO2e)
154000

Emissions calculation methodology
Hybrid method

Percentage of emissions calculated using data obtained from suppliers or value chain partners
0

Please explain
Scope 3 emissions arising from fuel and energy are estimated by applying Scope 3 emissions factors to the fuel and energy consumption figures that are used for Scope 1 and 2 reporting. Following guidance from the UK Department for Business, Energy & Industrial Strategy (BEIS), transmission losses which were included in Scope 2 are now included in Scope 3, Category 3. The Scope 3 emissions factors for electricity transmission and distribution losses are taken from the UK Department for Business, Energy & Industrial Strategy (BEIS), whilst the remainder are currently drawn from the Environmentally Extended Economic Input Output analysis model to cover the complete supply chain. Further information is available at bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology.

Upstream transportation and distribution

Evaluation status
Relevant, calculated

Emissions in reporting year (metric tons CO2e)
15000

Emissions calculation methodology
Supplier-specific method
Spend-based method

Percentage of emissions calculated using data obtained from suppliers or value chain partners
0.9

Please explain
EEIO analysis has been based on BT spend data. In instances where upstream transport and distribution services spend is defined, emissions were included in this category. However, not all upstream transport and distribution is captured as a separate service spend. In most cases upstream transport and distribution forms part of the purchase price of goods and is therefore included within the EEIO model for category 1 purchased goods and services. It is currently not possible to separate out these emissions. Further information is available at bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology.
Waste generated in operations

Emissions in reporting year (metric tons CO2e)
17000

Emissions calculation methodology
Waste-type-specific method

Percentage of emissions calculated using data obtained from suppliers or value chain partners
0

Please explain
This calculation is based on the quantities of waste by type generated provided by BT and Process Life Cycle Analysis (LCA) figures provided by the UK Department for Business, Energy & Industrial Strategy (BEIS) to model the waste treatment processes. EEIO is used to capture the upstream supply chain components of the waste treatment activities. Further information is available at bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology.

Business travel

Emissions in reporting year (metric tons CO2e)
13000

Emissions calculation methodology
Hybrid method
Spend-based method
Fuel-based method
Distance-based method

Percentage of emissions calculated using data obtained from suppliers or value chain partners
0

Please explain
This calculation is based on data from BT’s expenses system and other travel data bases. We also add associated upstream emissions from, for example, the manufacture of cars, airplanes and trains. In order to do this, we used a hybrid approach based on data from BT’s expenses system and EEIO for upstream components. Further information is available at bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology.

Employee commuting

Emissions in reporting year (metric tons CO2e)
27000

Emissions calculation methodology
Hybrid method
Average data method

Percentage of emissions calculated using data obtained from suppliers or value chain partners
0

Please explain
Emissions associated with employee commuting are calculated using BT Global Employee profile and UK Department of Transport (DfT) travel survey data and Department for Business, Energy and Industrial Strategy (BEIS) travel and transport mode emission factors. Whilst the BT Global Employee data is for the current year (FY22) the DfT and BEIS data sets are for FY20 and FY21 respectively, which are the latest years currently available. Homeworker emissions are calculated using a hybrid approach based on data from BT’s expenses system and EEIO for upstream components. Further information is available at bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology.

Upstream leased assets

Emissions in reporting year (metric tons CO2e)
37000

Emissions calculation methodology
Supplier-specific method
Hybrid method
Spend-based method
Average product method
Asset-specific method

Percentage of emissions calculated using data obtained from suppliers or value chain partners
0.5

Please explain
Emissions associated with leased company cars are calculated using a hybrid approach. This is based on the mileage travelled, fuel used and EEIO model data for the upstream carbon associated with the fuel supply chain and the manufacture and maintenance of the vehicles. For BT leased property this has been calculated using EEIO analysis based on BT spend data. Further information is available at bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology.
Downstream transportation and distribution

Evaluation status
Not relevant, explanation provided

Emissions in reporting year (metric tons CO2e)
<Not Applicable>

Emissions calculation methodology
<Not Applicable>

Percentage of emissions calculated using data obtained from suppliers or value chain partners
<Not Applicable>

Please explain
An activity not applicable to BT. Product distribution is either included in the supplier contract or provided through postal services, e.g. Parcel Force. The associated carbon would be included in Category 1: Purchased Goods and Services figures where this is included as part of overall service or Category 4: upstream transportation and distribution where purchased as a separate service.

Processing of sold products

Evaluation status
Not relevant, explanation provided

Emissions in reporting year (metric tons CO2e)
<Not Applicable>

Emissions calculation methodology
<Not Applicable>

Percentage of emissions calculated using data obtained from suppliers or value chain partners
<Not Applicable>

Please explain
An activity not applicable to BT. We do not perform intermediary manufacturing processing on any of our products.

Use of sold products

Evaluation status
Relevant, calculated

Emissions in reporting year (metric tons CO2e)
756000

Emissions calculation methodology
Methodology for direct use phase emissions, please specify (This calculation is based on power consumption, estimated life span and use profile for each type of equipment multiplied by the volumes of equipment sold over the current year.)

Percentage of emissions calculated using data obtained from suppliers or value chain partners
0

Please explain
This calculation is based on power consumption, estimated life span and use profile for each type of equipment multiplied by the volumes of equipment sold over the current year. It includes both networking equipment and office equipment supplied to our business customers, as well as equipment supplied to our residential customers. The UK Department for Business, Energy & Industrial Strategy (BEIS) UK electricity emissions factors including the fuel supply chain and transmission losses are used to calculate emissions from power consumption. Further information is available at bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology.

End of life treatment of sold products

Evaluation status
Relevant, calculated

Emissions in reporting year (metric tons CO2e)
1000

Emissions calculation methodology
Waste-type-specific method

Percentage of emissions calculated using data obtained from suppliers or value chain partners
0

Please explain
Waste material quantities by type for products sold in the UK provided by BT and Process Life Cycle Analysis (LCA) figures provided by the UK Department for Business, Energy & Industrial Strategy (BEIS) have been used to model the end of life treatment processes. The UK data has been extrapolated to cover end of life treatment of products sold outside the UK. Further information is available at bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology.
Downstream leased assets

Evaluation status
Not relevant, explanation provided

Emissions in reporting year (metric tons CO2e)
<Not Applicable>

Emissions calculation methodology
<Not Applicable>

Percentage of emissions calculated using data obtained from suppliers or value chain partners
<Not Applicable>

Please explain
An activity not applicable to BT. A review by the Carbon Trust identified that only 1% of BT buildings fall under Scope 3, and therefore is deemed not significant enough to be relevant for inclusion in our Scope 3 inventory.

Franchises

Evaluation status
Not relevant, explanation provided

Emissions in reporting year (metric tons CO2e)
<Not Applicable>

Emissions calculation methodology
<Not Applicable>

Percentage of emissions calculated using data obtained from suppliers or value chain partners
<Not Applicable>

Please explain
An activity not applicable to BT. A study carried out by the Carbon Trust found that BT does not operate any franchises except for BT Local Business which is a franchise operation of 50 SMEs and which was considered to be too small to be included as emissions will be minimal.

Investments

Evaluation status
Not relevant, explanation provided

Emissions in reporting year (metric tons CO2e)
<Not Applicable>

Emissions calculation methodology
<Not Applicable>

Percentage of emissions calculated using data obtained from suppliers or value chain partners
<Not Applicable>

Please explain
Where material, we include this in our Scope 1 and 2 reporting. A study carried out by the Carbon Trust found that 99% of BT’s investments were accounted for under Scopes 1 and 2.

Other (upstream)

Evaluation status
Not evaluated

Emissions in reporting year (metric tons CO2e)
<Not Applicable>

Emissions calculation methodology
<Not Applicable>

Percentage of emissions calculated using data obtained from suppliers or value chain partners
<Not Applicable>

Please explain

Other (downstream)

Evaluation status
Not evaluated

Emissions in reporting year (metric tons CO2e)
<Not Applicable>

Emissions calculation methodology
<Not Applicable>

Percentage of emissions calculated using data obtained from suppliers or value chain partners
<Not Applicable>

Please explain

C6.7

(C6.7) Are carbon dioxide emissions from biogenic carbon relevant to your organization?
No

CDP
C6.10

(C6.10) Describe your gross global combined Scope 1 and 2 emissions for the reporting year in metric tons CO2e per unit currency total revenue and provide any additional intensity metrics that are appropriate to your business operations.

Intensity figure
0.0000086

Metric numerator (Gross global combined Scope 1 and 2 emissions, metric tons CO2e)
180933

Metric denominator
unit total revenue

Metric denominator: Unit total
20850000000

Scope 2 figure used
Market-based

% change from previous year
6

Direction of change
Increased

Reason for change
Emissions intensity has increased compared to FY21 because of the rebound effect from the pandemic and an increase in vehicle emissions to support our full fibre rollout. N.B. emissions are down by 55% per £m value added (adjusted EBITDA plus employee costs) compared to FY17.

C7. Emissions breakdowns

C7.1

(C7.1) Does your organization break down its Scope 1 emissions by greenhouse gas type?
Yes

C7.1a

(C7.1a) Break down your total gross global Scope 1 emissions by greenhouse gas type and provide the source of each used greenhouse warming potential (GWP).

<table>
<thead>
<tr>
<th>Greenhouse gas</th>
<th>Scope 1 emissions (metric tons of CO2e)</th>
<th>GWP Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2</td>
<td>176191</td>
<td>IPCC Fourth Assessment Report (AR4 - 100 year)</td>
</tr>
<tr>
<td>HFCs</td>
<td>4588</td>
<td>IPCC Fourth Assessment Report (AR4 - 100 year)</td>
</tr>
</tbody>
</table>

C7.2

(C7.2) Break down your total gross global Scope 1 emissions by country/region.

<table>
<thead>
<tr>
<th>Country/Region</th>
<th>Scope 1 emissions (metric tons CO2e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>United Kingdom of Great Britain and Northern Ireland</td>
<td>177015</td>
</tr>
<tr>
<td>Other, please specify (Europe, Middle East & Africa (EMEA) - excluding UK)</td>
<td>3434</td>
</tr>
<tr>
<td>Americas</td>
<td>140</td>
</tr>
<tr>
<td>Asia Pacific (or JAPA)</td>
<td>189</td>
</tr>
</tbody>
</table>

C7.3

(C7.3) Indicate which gross global Scope 1 emissions breakdowns you are able to provide.

By activity
C7.3c Break down your total gross global Scope 1 emissions by business activity.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Scope 1 emissions (metric tons CO2e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil combustion - electricity generation</td>
<td>6928</td>
</tr>
<tr>
<td>Oil combustion - heating</td>
<td>1564</td>
</tr>
<tr>
<td>Gas combustion</td>
<td>32026</td>
</tr>
<tr>
<td>Refrigerant gases (HFC and SF6 only)</td>
<td>4588</td>
</tr>
<tr>
<td>Commercial vehicle fleet</td>
<td>131546</td>
</tr>
<tr>
<td>Company car fleet</td>
<td>4136</td>
</tr>
</tbody>
</table>

C7.5

C7.7 Break down your total gross global Scope 1 emissions by country/region.

<table>
<thead>
<tr>
<th>Country/Region</th>
<th>Scope 1, location-based (metric tons CO2e)</th>
<th>Scope 1, market-based (metric tons CO2e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>United Kingdom of Great Britain and Northern Ireland</td>
<td>491152</td>
<td>0</td>
</tr>
<tr>
<td>Other, please specify (Europe, Middle East & Africa (EMEA) - excluding UK)</td>
<td>51169</td>
<td>34</td>
</tr>
<tr>
<td>Americas</td>
<td>11342</td>
<td>0</td>
</tr>
<tr>
<td>Asia Pacific (or JAPA)</td>
<td>580</td>
<td>121</td>
</tr>
</tbody>
</table>

C7.6

C7.6c Indicate which gross global Scope 2 emissions breakdowns you are able to provide.

By activity

C7.9 How do your gross global emissions (Scope 1 and 2 combined) for the reporting year compare to those of the previous reporting year?

Increased
Identify the reasons for any change in your gross global emissions (Scope 1 and 2 combined), and for each of them specify how your emissions compare to the previous year.

<table>
<thead>
<tr>
<th>Change in emissions (metric tons CO2e)</th>
<th>Direction of change</th>
<th>Emissions value (percentage)</th>
<th>Please explain calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change in renewable energy consumption</td>
<td>47</td>
<td>Decreased 0.03</td>
<td>The data represents the carbon emissions saved through additional purchases of renewable electricity, based on the number of Energy Attribute Certificates purchased per country where we cannot buy green electricity directly through our supplier. Calculation of emissions value percentage: 47 tCO2e / 171,684 tCO2e [previously reported FY21 scope 1 and 2 emissions] * 100.</td>
</tr>
<tr>
<td>Other emissions reduction activities</td>
<td>856</td>
<td>Decreased 0.5</td>
<td>This is an estimate of how far scope 1 emissions relating to stationary fuel usage reduced compared to the previous year; the net reduction relates to reduced use of diesel generators; reductions in diesel usage due to energy saving projects were offset by increased gas consumption in the UK due to rebound from Covid. The impact of Covid rebound effects versus the impact of the energy saving projects cannot be disaggregated. Calculation of emissions value percentage: 856 tCO2e / 171,684 tCO2e [previously reported FY21 scope 1 and 2 emissions] * 100.</td>
</tr>
<tr>
<td>Divestment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acquisitions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mergers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change in output</td>
<td>9215</td>
<td>Increased 5.38</td>
<td>UK Commercial fleet emissions increased from 121,732 tonnes in FY21 to 131,567 tonnes in FY22, to support our full fibre rollout. Additionally, commercial travel emissions increased by 124 tonnes as travel patterns recovered following the pandemic. Calculation of emissions value percentage: 9,215 tCO2e / 171,684 tCO2e [previously reported FY21 scope 1 and 2 emissions] * 100.</td>
</tr>
<tr>
<td>Change in methodology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change in boundary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change in physical operating conditions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unidentified</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>1005</td>
<td>Increased 0.59</td>
<td>Fugitive emissions increased by 1005 tonnes; fugitive emissions data tends to go up and down with annual variations in temperature and depends on the maintenance cycle as to in which year the leakages are identified. Calculation of emissions value percentage: 1,005 tCO2e / 171,684 tCO2e [previously reported FY21 scope 1 and 2 emissions] * 100.</td>
</tr>
</tbody>
</table>

(C7.9b) Are your emissions performance calculations in C7.9 and C7.9a based on a location-based Scope 2 emissions figure or a market-based Scope 2 emissions figure?

Market-based

C8. Energy

C8.1

What percentage of your total operational spend in the reporting year was on energy?

More than 5% but less than or equal to 5%

C8.2

Select which energy-related activities your organization has undertaken.

<table>
<thead>
<tr>
<th>Energy-related activity</th>
<th>Indicate whether your organization undertook this energy-related activity in the reporting year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumption of fuel (excluding feedstocks)</td>
<td>Yes</td>
</tr>
<tr>
<td>Consumption of purchased or acquired electricity</td>
<td>Yes</td>
</tr>
<tr>
<td>Consumption of purchased or acquired heat</td>
<td>Yes</td>
</tr>
<tr>
<td>Consumption of purchased or acquired steam</td>
<td>No</td>
</tr>
<tr>
<td>Consumption of purchased or acquired cooling</td>
<td>No</td>
</tr>
<tr>
<td>Generation of electricity, heat, steam, or costing</td>
<td>Yes</td>
</tr>
</tbody>
</table>
C8.2a

(C8.2a) Report your organization’s energy consumption totals (excluding feedstocks) in MWh.

<table>
<thead>
<tr>
<th>Source of Consumption</th>
<th>Heating value (MWh)</th>
<th>MWh from renewable sources</th>
<th>MWh from non-renewable sources</th>
<th>Total (renewable and non-renewable) MWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumption of fuel</td>
<td>30138</td>
<td>752000</td>
<td>782138</td>
<td></td>
</tr>
<tr>
<td>purchased or acquired</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>electricity</td>
<td>2526977</td>
<td>316</td>
<td>2527293</td>
<td></td>
</tr>
<tr>
<td>Consumption of fuel</td>
<td>293</td>
<td>0</td>
<td>293</td>
<td></td>
</tr>
<tr>
<td>purchased or acquired</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>food</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumption of fuel</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td></td>
</tr>
<tr>
<td>purchased or acquired</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>steam</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumption of fuel</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td></td>
</tr>
<tr>
<td>self-generated</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>non-fuel renewable</td>
<td>21</td>
<td></td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>energy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total energy</td>
<td><Not Applicable></td>
<td>2557691</td>
<td>752316</td>
<td>3309745</td>
</tr>
<tr>
<td>consumption</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C8.2b

(C8.2b) Select the applications of your organization’s consumption of fuel.

<table>
<thead>
<tr>
<th>Fuel application</th>
<th>Indicate whether your organization undertakes this fuel application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumption of fuel for the generation of electricity</td>
<td>Yes</td>
</tr>
<tr>
<td>Consumption of fuel for the generation of heat</td>
<td>Yes</td>
</tr>
<tr>
<td>Consumption of fuel for the generation of steam</td>
<td>No</td>
</tr>
<tr>
<td>Consumption of fuel for the generation of cooling</td>
<td>No</td>
</tr>
<tr>
<td>Consumption of fuel for co-generation or tri-generation</td>
<td>No</td>
</tr>
</tbody>
</table>

C8.2c

(C8.2c) State how much fuel in MWh your organization has consumed (excluding feedstocks) by fuel type.

Sustainable biomass

- **Heating value**
 - Please select
 - Total fuel MWh consumed by the organization: 0
 - MWh fuel consumed for self-generation of electricity: 0
 - MWh fuel consumed for self-generation of heat: 0
 - MWh fuel consumed for self-generation of steam: <Not Applicable>
 - MWh fuel consumed for self-generation of cooling: <Not Applicable>
 - MWh fuel consumed for self- cogeneration or self-trigeneration: <Not Applicable>
 - Comment

Other biomass

- **Heating value**
 - Please select
 - Total fuel MWh consumed by the organization: 0
 - MWh fuel consumed for self-generation of electricity: 0
 - MWh fuel consumed for self-generation of heat: 0
 - MWh fuel consumed for self-generation of steam: <Not Applicable>
 - MWh fuel consumed for self-generation of cooling: <Not Applicable>
 - MWh fuel consumed for self- cogeneration or self-trigeneration: <Not Applicable>
 - Comment
Other renewable fuels (e.g. renewable hydrogen)

Heating value

Total fuel MWh consumed by the organization
0

MWh fuel consumed for self-generation of electricity
0

MWh fuel consumed for self-generation of heat
0

MWh fuel consumed for self-generation of steam
<Not Applicable>

MWh fuel consumed for self-generation of cooling
<Not Applicable>

MWh fuel consumed for self- cogeneration or self-trigeneration
<Not Applicable>

Comment

Coal

Heating value

Total fuel MWh consumed by the organization
0

MWh fuel consumed for self-generation of electricity
0

MWh fuel consumed for self-generation of heat
0

MWh fuel consumed for self-generation of steam
<Not Applicable>

MWh fuel consumed for self-generation of cooling
<Not Applicable>

MWh fuel consumed for self- cogeneration or self-trigeneration
<Not Applicable>

Comment

Oil

Heating value

HHV

Total fuel MWh consumed by the organization
607855

MWh fuel consumed for self-generation of electricity
30138

MWh fuel consumed for self-generation of heat
577717

MWh fuel consumed for self-generation of steam
<Not Applicable>

MWh fuel consumed for self-generation of cooling
<Not Applicable>

MWh fuel consumed for self- cogeneration or self-trigeneration
<Not Applicable>

Comment

Figure for self-generation of heat includes diesel, petrol and other fuels used in the commercial fleet and for commercial travel. The breakdown by fuel is not reported.
Gas

Heating value
HHV

Total fuel MWh consumed by the organization
174283

MWh fuel consumed for self-generation of electricity
0

MWh fuel consumed for self-generation of heat
174283

MWh fuel consumed for self-generation of steam
<Not Applicable>

MWh fuel consumed for self-generation of cooling
<Not Applicable>

MWh fuel consumed for self- cogeneration or self-trigeneration
<Not Applicable>

Comment

Other non-renewable fuels (e.g. non-renewable hydrogen)

Heating value

Total fuel MWh consumed by the organization
0

MWh fuel consumed for self-generation of electricity
0

MWh fuel consumed for self-generation of heat
0

MWh fuel consumed for self-generation of steam
<Not Applicable>

MWh fuel consumed for self-generation of cooling
<Not Applicable>

MWh fuel consumed for self- cogeneration or self-trigeneration
<Not Applicable>

Comment

Total fuel

Heating value

Total fuel MWh consumed by the organization
782138

MWh fuel consumed for self-generation of electricity
30138

MWh fuel consumed for self-generation of heat
752000

MWh fuel consumed for self-generation of steam
<Not Applicable>

MWh fuel consumed for self-generation of cooling
<Not Applicable>

MWh fuel consumed for self- cogeneration or self-trigeneration
<Not Applicable>

Comment

C8.2d

(C8.2d) Provide details on the electricity, heat, steam, and cooling your organization has generated and consumed in the reporting year.

<table>
<thead>
<tr>
<th></th>
<th>Total Gross generation (MWh)</th>
<th>Generation that is consumed by the organization (MWh)</th>
<th>Gross generation from renewable sources (MWh)</th>
<th>Generation from renewable sources that is consumed by the organization (MWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity</td>
<td>30159</td>
<td>30159</td>
<td>30159</td>
<td>30159</td>
</tr>
<tr>
<td>Heat</td>
<td>180479</td>
<td>180479</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Steam</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cooling</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

C8.2g
(C8.2g) Provide a breakdown of your non-fuel energy consumption by country.

<table>
<thead>
<tr>
<th>Country/area</th>
<th>Consumption of electricity (MWh)</th>
<th>Consumption of heat, steam, and cooling (MWh)</th>
<th>Total non-fuel energy consumption (MWh) [Auto-calculated]</th>
<th>Is this consumption excluded from your RE100 commitment?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algeria</td>
<td>45.21</td>
<td>0</td>
<td>45.21</td>
<td>No</td>
</tr>
<tr>
<td>Argentina</td>
<td>4.77</td>
<td>0</td>
<td>4.77</td>
<td>No</td>
</tr>
<tr>
<td>Australia</td>
<td>323.55</td>
<td>0</td>
<td>323.55</td>
<td>No</td>
</tr>
<tr>
<td>Austria</td>
<td>76.22</td>
<td>0</td>
<td>76.22</td>
<td>No</td>
</tr>
<tr>
<td>Bahrain</td>
<td>0.63</td>
<td>0</td>
<td>0.63</td>
<td>No</td>
</tr>
<tr>
<td>Bangladesh</td>
<td>0.13</td>
<td>0</td>
<td>0.13</td>
<td>No</td>
</tr>
</tbody>
</table>

CDP
<table>
<thead>
<tr>
<th>Country/area</th>
<th>Consumption of electricity (MWh)</th>
<th>Consumption of heat, steam, and cooling (MWh)</th>
<th>Total non-fuel energy consumption (MWh) [Auto-calculated]</th>
<th>Is this consumption excluded from your RE100 commitment?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belgium</td>
<td>2989.56</td>
<td>0</td>
<td>2989.56</td>
<td>No</td>
</tr>
<tr>
<td>Brazil</td>
<td>8914.3</td>
<td>0</td>
<td>8914.3</td>
<td>No</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>0.16</td>
<td>0</td>
<td>0.16</td>
<td>No</td>
</tr>
<tr>
<td>Canada</td>
<td>71.58</td>
<td>0</td>
<td>71.58</td>
<td>No</td>
</tr>
<tr>
<td>Chile</td>
<td>126.55</td>
<td>0</td>
<td>126.55</td>
<td>No</td>
</tr>
<tr>
<td>China</td>
<td>106.69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country/area</td>
<td>Consumption of electricity (MWh)</td>
<td>Consumption of heat, steam, and cooling (MWh)</td>
<td>Total non-fuel energy consumption (MWh) [Auto-calculated]</td>
<td>Is this consumption excluded from your RE100 commitment?</td>
</tr>
<tr>
<td>-------------</td>
<td>---------------------------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Colombia</td>
<td>734.76</td>
<td>0</td>
<td>734.76</td>
<td>No</td>
</tr>
<tr>
<td>Costa Rica</td>
<td>312.21</td>
<td>0</td>
<td>312.21</td>
<td>No</td>
</tr>
<tr>
<td>Croatia</td>
<td>270.37</td>
<td>0</td>
<td>270.37</td>
<td>No</td>
</tr>
<tr>
<td>Cyprus</td>
<td>270.37</td>
<td>0</td>
<td>270.37</td>
<td>No</td>
</tr>
<tr>
<td>Czechia</td>
<td>31.95</td>
<td>0</td>
<td>31.95</td>
<td>No</td>
</tr>
<tr>
<td>Denmark</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>No</td>
</tr>
</tbody>
</table>
Consumption of heat, steam, and cooling (MWh)
0
Total non-fuel energy consumption (MWh) [Auto-calculated]
15.97
Is this consumption excluded from your RE100 commitment?
No

Country/area
Ecuador
Consumption of electricity (MWh)
183.92
Consumption of heat, steam, and cooling (MWh)
0
Total non-fuel energy consumption (MWh) [Auto-calculated]
183.92
Is this consumption excluded from your RE100 commitment?
No

Country/area
Egypt
Consumption of electricity (MWh)
180.85
Consumption of heat, steam, and cooling (MWh)
0
Total non-fuel energy consumption (MWh) [Auto-calculated]
180.85
Is this consumption excluded from your RE100 commitment?
No

Country/area
Estonia
Consumption of electricity (MWh)
153.57
Consumption of heat, steam, and cooling (MWh)
0
Total non-fuel energy consumption (MWh) [Auto-calculated]
153.57
Is this consumption excluded from your RE100 commitment?
Please select

Country/area
Finland
Consumption of electricity (MWh)
460.71
Consumption of heat, steam, and cooling (MWh)
0
Total non-fuel energy consumption (MWh) [Auto-calculated]
460.71
Is this consumption excluded from your RE100 commitment?
No

Country/area
France
Consumption of electricity (MWh)
5852.24
Consumption of heat, steam, and cooling (MWh)
0
Total non-fuel energy consumption (MWh) [Auto-calculated]
5852.24
Is this consumption excluded from your RE100 commitment?
No
| Country/area | Consumption of electricity (MWh) | Consumption of heat, steam, and cooling (MWh) | Total non-fuel energy consumption (MWh) [Auto-calculated] | Is this consumption excluded from your RE100 commitment?
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Germany</td>
<td>37480.72</td>
<td>293.46</td>
<td>37774.18</td>
<td>No</td>
</tr>
<tr>
<td>Greece</td>
<td>540.75</td>
<td>0</td>
<td>540.75</td>
<td>No</td>
</tr>
<tr>
<td>Hong Kong SAR, China</td>
<td>204.75</td>
<td>0</td>
<td>204.75</td>
<td>No</td>
</tr>
<tr>
<td>Hungary</td>
<td>924.95</td>
<td>0</td>
<td>924.95</td>
<td>No</td>
</tr>
<tr>
<td>Iceland</td>
<td>153.57</td>
<td>0</td>
<td>153.57</td>
<td>No</td>
</tr>
<tr>
<td>India</td>
<td>4494.22</td>
<td>0</td>
<td>4494.22</td>
<td>No</td>
</tr>
<tr>
<td>Country/area</td>
<td>Consumption of electricity (MWh)</td>
<td>Consumption of heat, steam, and cooling (MWh)</td>
<td>Total non-fuel energy consumption (MWh) [Auto-calculated]</td>
<td>Is this consumption excluded from your RE100 commitment?</td>
</tr>
<tr>
<td>-------------</td>
<td>---------------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Indonesia</td>
<td>10.05</td>
<td>0</td>
<td>10.05</td>
<td>No</td>
</tr>
<tr>
<td>Ireland</td>
<td>38539.71</td>
<td>0</td>
<td>38539.71</td>
<td>No</td>
</tr>
<tr>
<td>Israel</td>
<td>90.43</td>
<td>0</td>
<td>90.43</td>
<td>No</td>
</tr>
<tr>
<td>Italy</td>
<td>71379.24</td>
<td>0</td>
<td>71379.24</td>
<td>No</td>
</tr>
<tr>
<td>Japan</td>
<td>89.6</td>
<td>0</td>
<td>89.6</td>
<td>No</td>
</tr>
<tr>
<td>Jordan</td>
<td>45.21</td>
<td>0</td>
<td>45.21</td>
<td>No</td>
</tr>
<tr>
<td>Country/area</td>
<td>Consumption of electricity (MWh)</td>
<td>Consumption of heat, steam, and cooling (MWh)</td>
<td>Total non-fuel energy consumption (MWh) [Auto-calculated]</td>
<td>Is this consumption excluded from your RE100 commitment?</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------------------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Kazakhstan</td>
<td>45.21</td>
<td>0</td>
<td>45.21</td>
<td>No</td>
</tr>
<tr>
<td>Kenya</td>
<td>45.21</td>
<td>0</td>
<td>45.21</td>
<td>Yes</td>
</tr>
<tr>
<td>Republic of Korea</td>
<td>191.41</td>
<td>0</td>
<td>191.41</td>
<td>No</td>
</tr>
<tr>
<td>Kuwait</td>
<td>45.21</td>
<td>0</td>
<td>45.21</td>
<td>No</td>
</tr>
<tr>
<td>Latvia</td>
<td>3.87</td>
<td>0</td>
<td>3.87</td>
<td>No</td>
</tr>
<tr>
<td>Lithuania</td>
<td>153.57</td>
<td>0</td>
<td>153.57</td>
<td>No</td>
</tr>
<tr>
<td>Country/area</td>
<td>Total non-fuel energy consumption (MWh) [Auto-calculated]</td>
<td>Is this consumption excluded from your RE100 commitment?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Luxembourg</td>
<td>153.57</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malaysia</td>
<td>335.04</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malta</td>
<td>270.37</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mexico</td>
<td>1594.6</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morocco</td>
<td>45.21</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Netherlands</td>
<td>6401.31</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country/area</td>
<td>Consumption of electricity (MWh)</td>
<td>Consumption of heat, steam, and cooling (MWh)</td>
<td>Total non-fuel energy consumption (MWh) [Auto-calculated]</td>
<td>Is this consumption excluded from your RE100 commitment?</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>New Zealand</td>
<td>45.21</td>
<td>0</td>
<td>45.21</td>
<td>NO</td>
</tr>
<tr>
<td>Nigeria</td>
<td>45.21</td>
<td>0</td>
<td>45.21</td>
<td>NO</td>
</tr>
<tr>
<td>Norway</td>
<td>56.14</td>
<td>0</td>
<td>56.14</td>
<td>NO</td>
</tr>
<tr>
<td>Oman</td>
<td>0.39</td>
<td>0</td>
<td>0.39</td>
<td>NO</td>
</tr>
<tr>
<td>Pakistan</td>
<td>0.01</td>
<td>0</td>
<td>0.01</td>
<td>NO</td>
</tr>
<tr>
<td>Panama</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country/area</td>
<td>Consumption of electricity (MWh)</td>
<td>Consumption of heat, steam, and cooling (MWh)</td>
<td>Total non-fuel energy consumption (MWh) [Auto-calculated]</td>
<td>Is this consumption excluded from your RE100 commitment?</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------------------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Peru</td>
<td>188.52</td>
<td>0</td>
<td>188.52</td>
<td>No</td>
</tr>
<tr>
<td>Philippines</td>
<td>0.78</td>
<td>0</td>
<td>0.78</td>
<td>No</td>
</tr>
<tr>
<td>Poland</td>
<td>22.15</td>
<td>0</td>
<td>22.15</td>
<td>No</td>
</tr>
<tr>
<td>Portugal</td>
<td>4.27</td>
<td>0</td>
<td>4.27</td>
<td>No</td>
</tr>
<tr>
<td>Qatar</td>
<td>90.43</td>
<td>0</td>
<td>90.43</td>
<td>No</td>
</tr>
<tr>
<td>Country/area</td>
<td>Consumption of electricity (MWh)</td>
<td>Consumption of heat, steam, and cooling (MWh)</td>
<td>Total non-fuel energy consumption (MWh) [Auto-calculated]</td>
<td>Is this consumption excluded from your RE100 commitment?</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------------------</td>
<td>---</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Romania</td>
<td>270.37</td>
<td>0</td>
<td>270.37</td>
<td>No</td>
</tr>
<tr>
<td>Russian Federation</td>
<td>460.71</td>
<td>0</td>
<td>460.71</td>
<td>No</td>
</tr>
<tr>
<td>Saudi Arabia</td>
<td>45.21</td>
<td>0</td>
<td>45.21</td>
<td>No</td>
</tr>
<tr>
<td>Serbia</td>
<td>270.37</td>
<td>0</td>
<td>270.37</td>
<td>No</td>
</tr>
<tr>
<td>Singapore</td>
<td>190.65</td>
<td>0</td>
<td>190.65</td>
<td>No</td>
</tr>
<tr>
<td>Slovakia</td>
<td>8.51</td>
<td>0</td>
<td>8.51</td>
<td>No</td>
</tr>
<tr>
<td>Country/area</td>
<td>Consumption of electricity (MWh)</td>
<td>Consumption of heat, steam, and cooling (MWh)</td>
<td>Total non-fuel energy consumption (MWh) [Auto-calculated]</td>
<td>Is this consumption excluded from your RE100 commitment?</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------------------</td>
<td>---</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Slovenia</td>
<td>270.37</td>
<td>0</td>
<td>270.37</td>
<td>No</td>
</tr>
<tr>
<td>South Africa</td>
<td>122.99</td>
<td>0</td>
<td>122.99</td>
<td>No</td>
</tr>
<tr>
<td>Spain</td>
<td>165.43</td>
<td>0</td>
<td>165.43</td>
<td>No</td>
</tr>
<tr>
<td>Sri Lanka</td>
<td>45.21</td>
<td>0</td>
<td>45.21</td>
<td>No</td>
</tr>
<tr>
<td>Sweden</td>
<td>653.34</td>
<td>0</td>
<td>653.34</td>
<td>No</td>
</tr>
<tr>
<td>Switzerland</td>
<td>2424.05</td>
<td>0</td>
<td>2424.05</td>
<td>No</td>
</tr>
<tr>
<td>Country/area</td>
<td>Consumption of electricity (MWh)</td>
<td>Consumption of heat, steam, and cooling (MWh)</td>
<td>Total non-fuel energy consumption (MWh) [Auto-calculated]</td>
<td>Is this consumption excluded from your RE100 commitment?</td>
</tr>
<tr>
<td>------------------------</td>
<td>---------------------------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Taiwan, China</td>
<td>135.64</td>
<td>0</td>
<td>135.64</td>
<td>No</td>
</tr>
<tr>
<td>Thailand</td>
<td>2.16</td>
<td>0</td>
<td>2.16</td>
<td>No</td>
</tr>
<tr>
<td>Turkey</td>
<td>0.31</td>
<td>0</td>
<td>0.31</td>
<td>No</td>
</tr>
<tr>
<td>Ukraine</td>
<td>460.71</td>
<td>0</td>
<td>460.71</td>
<td>Yes</td>
</tr>
<tr>
<td>United Arab Emirates</td>
<td>28.93</td>
<td>0</td>
<td>28.93</td>
<td>No</td>
</tr>
<tr>
<td>United Kingdom of Great Britain and Northern Ireland</td>
<td>2311687.44</td>
<td>0</td>
<td>2311687.44</td>
<td>No</td>
</tr>
<tr>
<td>Country/area</td>
<td>Consumption of electricity (MWh)</td>
<td>Consumption of heat, steam, and cooling (MWh)</td>
<td>Total non-fuel energy consumption (MWh) [Auto-calculated]</td>
<td>Is this consumption excluded from your RE100 commitment?</td>
</tr>
<tr>
<td>---------------------------</td>
<td>----------------------------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>United States of America</td>
<td>23953.47</td>
<td>0</td>
<td>23953.47</td>
<td>No</td>
</tr>
<tr>
<td>Venezuela (Bolivarian Rep)</td>
<td>766.11</td>
<td>0</td>
<td>766.11</td>
<td>No</td>
</tr>
<tr>
<td>Viet Nam</td>
<td>1.04</td>
<td>0</td>
<td>1.04</td>
<td>No</td>
</tr>
</tbody>
</table>

C8.2h

(C8.2h) Provide details of your organization’s renewable electricity purchases in the reporting year by country

<table>
<thead>
<tr>
<th>Country/area of renewable electricity consumption</th>
<th>Sourcing method</th>
<th>Renewable electricity technology type</th>
<th>Renewable electricity consumed via selected sourcing method in the reporting year (MWh)</th>
<th>Tracking instrument used</th>
<th>Total attribute instruments retained for consumption by your organization (MWh)</th>
<th>Country/area of origin (generation) of the renewable electricity/attribute consumed</th>
<th>Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)</th>
<th>Vintage of the renewable energy/attribute (i.e. year of generation)</th>
<th>Brand, label, or certification of the renewable electricity purchase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algeria</td>
<td>Unbundled Energy Attribute Certificate (EAC) purchase</td>
<td>Wind</td>
<td>45.21</td>
<td>I-REC</td>
<td>46</td>
<td>Morocco</td>
<td>2020</td>
<td>2021</td>
<td>No brand, label, or certification</td>
</tr>
</tbody>
</table>
Country/area of renewable electricity consumption
Argentina

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Solar

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
4.76

Tracking instrument used
I-REC

Total attribute instruments retained for consumption by your organization (MWh)
5

Country/area of origin (generation) of the renewable electricity/attribute consumed
Brazil

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
2020

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Commissioning Year unknown

Country/area of renewable electricity consumption
Australia

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Renewable electricity mix, please specify (Wind / Solar & Hydro Mix)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
58.89

Tracking instrument used
Australian LGC

Total attribute instruments retained for consumption by your organization (MWh)
59

Country/area of origin (generation) of the renewable electricity/attribute consumed
Australia

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
2020

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Commissioning Year unknown

Country/area of renewable electricity consumption
Australia

Sourcing method
Green electricity products from an energy supplier (e.g. Green Tariffs)

Renewable electricity technology type
Renewable electricity mix, please specify (Wind / Solar & Hydro)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
264.65

Tracking instrument used
Australian LGC

Total attribute instruments retained for consumption by your organization (MWh)
265

Country/area of origin (generation) of the renewable electricity/attribute consumed
Australia
Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
2020

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Commissioning Year unknown

Country/area of renewable electricity consumption
Austria

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Hydropower (capacity unknown)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
76.21

Tracking instrument used
GO

Total attribute instruments retained for consumption by your organization (MWh)
77

Country/area of origin (generation) of the renewable electricity/attribute consumed
Italy

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
2004

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
These are certified GOs.

Country/area of renewable electricity consumption
Bahrain

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Solar

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
0.63

Tracking instrument used
I-REC

Total attribute instruments retained for consumption by your organization (MWh)
1

Country/area of origin (generation) of the renewable electricity/attribute consumed
United Arab Emirates

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
2020

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Commissioning Year unknown

Country/area of renewable electricity consumption
Bangladesh

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Hydropower (capacity unknown)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
0.12
Tracking instrument used
I-REC

Total attribute instruments retained for consumption by your organization (MWh)
1

Country/area of origin (generation) of the renewable electricity/attribute consumed
India

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
2013

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Commissioning Year unknown as certificates sourced from multiple Hydro producers. Last major hydro plant commissioned in India in 2013

Country/area of origin (generation) of the renewable electricity/attribute consumed
Belgium

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
2020

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
The commissioning year is unknown, as the certificates come from a mix of renewable sources and producers.

Country/area of origin (generation) of the renewable electricity/attribute consumed
Belgium

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
2004

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
European Guarantees of Origin

Country/area of origin (generation) of the renewable electricity/attribute consumed
Italy

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
2004

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
European Guarantees of Origin

Country/area of origin (generation) of the renewable electricity/attribute consumed
Brazil
Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Renewable electricity mix, please specify (Hydro / Solar & Wind)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
8914.3

Tracking instrument used
I-REC

Total attribute instruments retained for consumption by your organization (MWh)
8915

Country/area of origin (generation) of the renewable electricity/attribute consumed
Brazil

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
2020

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Commissioning Year unknown

Country/area of renewable electricity consumption
Brazil

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Solar

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
182

Tracking instrument used
I-REC

Total attribute instruments retained for consumption by your organization (MWh)
182

Country/area of origin (generation) of the renewable electricity/attribute consumed
Brazil

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
2020

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
182MWh of certificates were purchased to cover electricity produced from standby oil generators

Commissioning Year unknown

Country/area of renewable electricity consumption
Brazil

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Hydropower (capacity unknown)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
0.16

Tracking instrument used
GO

Total attribute instruments retained for consumption by your organization (MWh)
1

Country/area of origin (generation) of the renewable electricity/attribute consumed
Italy

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
2004

Vintage of the renewable energy/attribute (i.e. year of generation)
<table>
<thead>
<tr>
<th>Country/area of renewable electricity consumption</th>
<th>Canada</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sourcing method</td>
<td>Unbundled Energy Attribute Certificate (EAC) purchase</td>
</tr>
<tr>
<td>Renewable electricity technology type</td>
<td>Hydropower (capacity unknown)</td>
</tr>
<tr>
<td>Renewable electricity consumed via selected sourcing method in the reporting year (MWh)</td>
<td>71.58</td>
</tr>
<tr>
<td>Country/area of origin (generation) of the renewable electricity/attribute consumed</td>
<td>United States of America</td>
</tr>
<tr>
<td>Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)</td>
<td>1985</td>
</tr>
<tr>
<td>Vintage of the renewable energy/attribute (i.e. year of generation)</td>
<td>2021</td>
</tr>
<tr>
<td>Brand, label, or certification of the renewable electricity purchase</td>
<td>No brand, label, or certification</td>
</tr>
<tr>
<td>Comment</td>
<td>Commissioning Year unknown - Sourced from multiple hydro power stations</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country/area of renewable electricity consumption</th>
<th>Chile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sourcing method</td>
<td>Unbundled Energy Attribute Certificate (EAC) purchase</td>
</tr>
<tr>
<td>Renewable electricity technology type</td>
<td>Solar</td>
</tr>
<tr>
<td>Renewable electricity consumed via selected sourcing method in the reporting year (MWh)</td>
<td>126.55</td>
</tr>
<tr>
<td>Country/area of origin (generation) of the renewable electricity/attribute consumed</td>
<td>Chile</td>
</tr>
<tr>
<td>Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)</td>
<td>2020</td>
</tr>
<tr>
<td>Vintage of the renewable energy/attribute (i.e. year of generation)</td>
<td>2021</td>
</tr>
<tr>
<td>Brand, label, or certification of the renewable electricity purchase</td>
<td>No brand, label, or certification</td>
</tr>
<tr>
<td>Comment</td>
<td>Commissioning Year unknown</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country/area of renewable electricity consumption</th>
<th>China</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sourcing method</td>
<td>Unbundled Energy Attribute Certificate (EAC) purchase</td>
</tr>
<tr>
<td>Renewable electricity technology type</td>
<td>Hydropower (capacity unknown)</td>
</tr>
<tr>
<td>Renewable electricity consumed via selected sourcing method in the reporting year (MWh)</td>
<td>106.69</td>
</tr>
<tr>
<td>Tracking instrument used</td>
<td>I-REC</td>
</tr>
<tr>
<td>Total attribute instruments retained for consumption by your organization (MWh)</td>
<td>127</td>
</tr>
</tbody>
</table>

For further details, please refer to the specific sections of the report.
Country/area of origin (generation) of the renewable electricity/attribute consumed	China
Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)	2020
Vintage of the renewable energy/attribute (i.e. year of generation)	2021
Brand, label, or certification of the renewable electricity purchase	No brand, label, or certification
Comment	Commissioning Year unknown

Country/area of renewable electricity consumption	Colombia
Sourcing method	Unbundled Energy Attribute Certificate (EAC) purchase
Renewable electricity technology type	Hydropower (capacity unknown)
Renewable electricity consumed via selected sourcing method in the reporting year (MWh)	734.76
Tracking instrument used	I-REC
Total attribute instruments retained for consumption by your organization (MWh)	734.76

Country/area of origin (generation) of the renewable electricity/attribute consumed	Colombia
Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)	2020
Vintage of the renewable energy/attribute (i.e. year of generation)	2021
Brand, label, or certification of the renewable electricity purchase	No brand, label, or certification
Comment	Commissioning Year unknown

Country/area of renewable electricity consumption	Costa Rica
Sourcing method	Unbundled Energy Attribute Certificate (EAC) purchase
Renewable electricity technology type	Renewable electricity mix, please specify (Solar & Hydro)
Renewable electricity consumed via selected sourcing method in the reporting year (MWh)	312.21
Tracking instrument used	I-REC
Total attribute instruments retained for consumption by your organization (MWh)	312

Country/area of origin (generation) of the renewable electricity/attribute consumed	Guatemala
Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)	2020
Vintage of the renewable energy/attribute (i.e. year of generation)	2021
Brand, label, or certification of the renewable electricity purchase	No brand, label, or certification
Comment	Commissioning Year unknown - From multiple RE producers

Country/area of renewable electricity consumption	Croatia
Sourcing method	Unbundled Energy Attribute Certificate (EAC) purchase
Renewable electricity technology type	CDP
Hydropower (capacity unknown)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh) 270.37

Tracking instrument used GO

Total attribute instruments retained for consumption by your organization (MWh) 271

Country/area of origin (generation) of the renewable electricity/attribute consumed Italy

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering) 2004

Vintage of the renewable energy/attribute (i.e. year of generation) 2021

Brand, label, or certification of the renewable electricity purchase No brand, label, or certification

Comment European Guarantees of Origin

Country/area of renewable electricity consumption Cyprus

Sourcing method Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type Renewable electricity mix, please specify (Solar / Wind / Hydro)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh) 270.37

Tracking instrument used GO

Total attribute instruments retained for consumption by your organization (MWh) 271

Country/area of origin (generation) of the renewable electricity/attribute consumed Italy

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering) 2004

Vintage of the renewable energy/attribute (i.e. year of generation) 2021

Brand, label, or certification of the renewable electricity purchase No brand, label, or certification

Comment European Guarantees of Origin

Country/area of renewable electricity consumption Czechia

Sourcing method Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type Hydropower (capacity unknown)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh) 31.95

Tracking instrument used GO

Total attribute instruments retained for consumption by your organization (MWh) 32

Country/area of origin (generation) of the renewable electricity/attribute consumed Italy

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering) 2004

Vintage of the renewable energy/attribute (i.e. year of generation) 2021

Brand, label, or certification of the renewable electricity purchase No brand, label, or certification

Comment European Guarantees of Origin
<table>
<thead>
<tr>
<th>Country/area of renewable electricity consumption</th>
<th>Denmark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sourcing method</td>
<td>Unbundled Energy Attribute Certificate (EAC) purchase</td>
</tr>
<tr>
<td>Renewable electricity technology type</td>
<td>Renewable electricity mix, please specify (Solar / Wind / Hydro)</td>
</tr>
<tr>
<td>Renewable electricity consumed via selected sourcing method in the reporting year (MWh)</td>
<td>15.97</td>
</tr>
<tr>
<td>Tracking instrument used</td>
<td>GO</td>
</tr>
<tr>
<td>Total attribute instruments retained for consumption by your organization (MWh)</td>
<td>16</td>
</tr>
<tr>
<td>Country/area of origin (generation) of the renewable electricity/attribute consumed</td>
<td>Italy</td>
</tr>
<tr>
<td>Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)</td>
<td>2004</td>
</tr>
<tr>
<td>Vintage of the renewable energy/attribute (i.e. year of generation)</td>
<td>2021</td>
</tr>
<tr>
<td>Brand, label, or certification of the renewable electricity purchase</td>
<td>No brand, label, or certification</td>
</tr>
<tr>
<td>Comment</td>
<td>European Guarantees of Origin</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country/area of renewable electricity consumption</th>
<th>Ecuador</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sourcing method</td>
<td>Unbundled Energy Attribute Certificate (EAC) purchase</td>
</tr>
<tr>
<td>Renewable electricity technology type</td>
<td>Hydropower (capacity unknown)</td>
</tr>
<tr>
<td>Renewable electricity consumed via selected sourcing method in the reporting year (MWh)</td>
<td>183.92</td>
</tr>
<tr>
<td>Tracking instrument used</td>
<td>I-REC</td>
</tr>
<tr>
<td>Total attribute instruments retained for consumption by your organization (MWh)</td>
<td>184</td>
</tr>
<tr>
<td>Country/area of origin (generation) of the renewable electricity/attribute consumed</td>
<td>Colombia</td>
</tr>
<tr>
<td>Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)</td>
<td>2017</td>
</tr>
<tr>
<td>Vintage of the renewable energy/attribute (i.e. year of generation)</td>
<td>2021</td>
</tr>
<tr>
<td>Brand, label, or certification of the renewable electricity purchase</td>
<td>No brand, label, or certification</td>
</tr>
<tr>
<td>Comment</td>
<td>Commissioning Year unknown</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country/area of renewable electricity consumption</th>
<th>Egypt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sourcing method</td>
<td>Unbundled Energy Attribute Certificate (EAC) purchase</td>
</tr>
<tr>
<td>Renewable electricity technology type</td>
<td>Solar</td>
</tr>
<tr>
<td>Renewable electricity consumed via selected sourcing method in the reporting year (MWh)</td>
<td>180.85</td>
</tr>
<tr>
<td>Tracking instrument used</td>
<td>I-REC</td>
</tr>
<tr>
<td>Total attribute instruments retained for consumption by your organization (MWh)</td>
<td>181</td>
</tr>
<tr>
<td>Country/area of origin (generation) of the renewable electricity/attribute consumed</td>
<td>Egypt</td>
</tr>
<tr>
<td>Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)</td>
<td>2020</td>
</tr>
<tr>
<td>Vintage of the renewable energy/attribute (i.e. year of generation)</td>
<td>2021</td>
</tr>
<tr>
<td>Tracking instrument used</td>
<td>I-REC</td>
</tr>
<tr>
<td>Total attribute instruments retained for consumption by your organization (MWh)</td>
<td>181</td>
</tr>
<tr>
<td>Country/area of renewable electricity consumption</td>
<td>Estonia</td>
</tr>
<tr>
<td>Brand, label, or certification of the renewable electricity purchase</td>
<td>No brand, label, or certification</td>
</tr>
<tr>
<td>Comment</td>
<td>Commissioning Year unknown</td>
</tr>
<tr>
<td>Sourcing method</td>
<td>Unbundled Energy Attribute Certificate (EAC) purchase</td>
</tr>
<tr>
<td>Renewable electricity technology type</td>
<td>Renewable electricity mix, please specify (Solar / Wind / Hydro)</td>
</tr>
<tr>
<td>Renewable electricity consumed via selected sourcing method in the reporting year (MWh)</td>
<td>153.57</td>
</tr>
<tr>
<td>Tracking instrument used</td>
<td>GO</td>
</tr>
<tr>
<td>Total attribute instruments retained for consumption by your organization (MWh)</td>
<td>154</td>
</tr>
<tr>
<td>Country/area of origin (generation) of the renewable electricity/attribute consumed</td>
<td>Italy</td>
</tr>
<tr>
<td>Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)</td>
<td>2004</td>
</tr>
<tr>
<td>Vintage of the renewable energy/attribute (i.e. year of generation)</td>
<td>2021</td>
</tr>
<tr>
<td>Brand, label, or certification of the renewable electricity purchase</td>
<td>No brand, label, or certification</td>
</tr>
<tr>
<td>Comment</td>
<td>European Guarantees of Origin</td>
</tr>
</tbody>
</table>

Country/area of renewable electricity consumption	France
Brand, label, or certification of the renewable electricity purchase	No brand, label, or certification
Comment	Year of commissioning unknown as GOs sourced from multiple renewable energy producers. 2015 has been used to complete the field, and represents the midway point for RE production (TWh) between 2000 - 2021 for Europe
Sourcing method	Unbundled Energy Attribute Certificate (EAC) purchase
Renewable electricity technology type	Hydropower (capacity unknown)
Renewable electricity consumed via selected sourcing method in the reporting year (MWh)	12.9
Tracking instrument used	GO
| Country/area of origin (generation) of the renewable electricity/attribute consumed | Italy |
|--|
| Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering) | 2015 |
| Vintage of the renewable energy/attribute (i.e. year of generation) | 2021 |
| Brand, label, or certification of the renewable electricity purchase | No brand, label, or certification |
| Comment | Nuclear Energy - Unbundled EACs purchased to cover consumption |

Country/area of renewable electricity consumption	France
Sourcing method	Unbundled Energy Attribute Certificate (EAC) purchase
Renewable electricity technology type	Hydropower (capacity unknown)
Renewable electricity consumed via selected sourcing method in the reporting year (MWh)	436.81
Tracking instrument used	GO
Total attribute instruments retained for consumption by your organization (MWh)	437

Country/area of origin (generation) of the renewable electricity/attribute consumed	France
Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)	2004
Vintage of the renewable energy/attribute (i.e. year of generation)	2021
Brand, label, or certification of the renewable electricity purchase	No brand, label, or certification
Comment	Unbundled EACs purchased to cover electricity produced by standby oil generators

Country/area of renewable electricity consumption	France
Sourcing method	Unbundled Energy Attribute Certificate (EAC) purchase
Renewable electricity technology type	Hydropower (capacity unknown)
Renewable electricity consumed via selected sourcing method in the reporting year (MWh)	2.16
Tracking instrument used	GO
Total attribute instruments retained for consumption by your organization (MWh)	3

Country/area of origin (generation) of the renewable electricity/attribute consumed	Italy
Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)	2004
Vintage of the renewable energy/attribute (i.e. year of generation)	2021
Brand, label, or certification of the renewable electricity purchase	No brand, label, or certification
Comment	Unbundled EACs purchased to cover electricity produced by standby oil generators

<p>| Country/area of renewable electricity consumption | Germany |
| Sourcing method | Green electricity products from an energy supplier (e.g. Green Tariffs) |</p>
<table>
<thead>
<tr>
<th>Renewable electricity technology type</th>
<th>Hydropower (capacity unknown)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renewable electricity consumed via selected sourcing method in the reporting year (MWh)</td>
<td>37480.72</td>
</tr>
<tr>
<td>Tracking instrument used</td>
<td>GO</td>
</tr>
<tr>
<td>Total attribute instruments retained for consumption by your organization (MWh)</td>
<td>37481</td>
</tr>
<tr>
<td>Country/area of origin (generation) of the renewable electricity/attribute consumed</td>
<td>Germany</td>
</tr>
<tr>
<td>Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)</td>
<td>2015</td>
</tr>
<tr>
<td>Vintage of the renewable energy/attribute (i.e. year of generation)</td>
<td>2021</td>
</tr>
<tr>
<td>Brand, label, or certification of the renewable electricity purchase</td>
<td>No brand, label, or certification</td>
</tr>
<tr>
<td>Comment</td>
<td>Year of commissioning unknown as GOs sourced from multiple renewable energy producers. 2015 has been used to complete the field, and represents the midway point for RE production (TWh) between 2000 - 2021 for Europe</td>
</tr>
<tr>
<td>Country/area of renewable electricity consumption</td>
<td>Germany</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sourcing method</th>
<th>Unbundled Energy Attribute Certificate (EAC) purchase</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Renewable electricity technology type</th>
<th>Hydropower (capacity unknown)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renewable electricity consumed via selected sourcing method in the reporting year (MWh)</td>
<td>293.46</td>
</tr>
<tr>
<td>Tracking instrument used</td>
<td>GO</td>
</tr>
<tr>
<td>Total attribute instruments retained for consumption by your organization (MWh)</td>
<td>294</td>
</tr>
<tr>
<td>Country/area of origin (generation) of the renewable electricity/attribute consumed</td>
<td>Italy</td>
</tr>
<tr>
<td>Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)</td>
<td>2004</td>
</tr>
<tr>
<td>Vintage of the renewable energy/attribute (i.e. year of generation)</td>
<td>2021</td>
</tr>
<tr>
<td>Brand, label, or certification of the renewable electricity purchase</td>
<td>No brand, label, or certification</td>
</tr>
<tr>
<td>Comment</td>
<td>Unbundled EACs purchased to cover District Heat Consumption</td>
</tr>
<tr>
<td>Country/area of renewable electricity consumption</td>
<td>Greece</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sourcing method</th>
<th>Unbundled Energy Attribute Certificate (EAC) purchase</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Renewable electricity technology type</th>
<th>Hydropower (capacity unknown)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renewable electricity consumed via selected sourcing method in the reporting year (MWh)</td>
<td>540.75</td>
</tr>
<tr>
<td>Tracking instrument used</td>
<td>GO</td>
</tr>
<tr>
<td>Total attribute instruments retained for consumption by your organization (MWh)</td>
<td>541</td>
</tr>
<tr>
<td>Country/area of origin (generation) of the renewable electricity/attribute consumed</td>
<td>Italy</td>
</tr>
<tr>
<td>Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)</td>
<td>2004</td>
</tr>
<tr>
<td>Vintage of the renewable energy/attribute (i.e. year of generation)</td>
<td>2021</td>
</tr>
<tr>
<td>Brand, label, or certification of the renewable electricity purchase</td>
<td>No brand, label, or certification</td>
</tr>
</tbody>
</table>
Country/area of renewable electricity consumption
Hong Kong SAR, China

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Hydropower (capacity unknown)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
204.75

Tracking instrument used
I-REC

Total attribute instruments retained for consumption by your organization (MWh)
205

Country/area of origin (generation) of the renewable electricity/attribute consumed
China

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
2020

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Commissioning Year unknown

Country/area of renewable electricity consumption
Hungary

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Renewable electricity mix, please specify (MIX Hydro / Solar / Wind)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
924.95

Tracking instrument used
GO

Total attribute instruments retained for consumption by your organization (MWh)
925

Country/area of origin (generation) of the renewable electricity/attribute consumed
Italy

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
2004

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment

Country/area of renewable electricity consumption
Iceland

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Hydropower (capacity unknown)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
153.57

Tracking instrument used
GO

Total attribute instruments retained for consumption by your organization (MWh)
154

Country/area of origin (generation) of the renewable electricity/attribute consumed
Italy

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
Vintage of the renewable energy/attribute (i.e. year of generation)	2021
Brand, label, or certification of the renewable electricity purchase	No brand, label, or certification
Comment	Certificates from AIB region from multiple countries, unable to distinguish between EU countries.

Country/area of renewable electricity consumption	India
Sourcing method	Unbundled Energy Attribute Certificate (EAC) purchase
Renewable electricity technology type	Hydropower (capacity unknown)
Renewable electricity consumed via selected sourcing method in the reporting year (MWh)	4494.22
Tracking instrument used	I-REC
Total attribute instruments retained for consumption by your organization (MWh)	4495
Country/area of origin (generation) of the renewable electricity/attribute consumed	India
Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)	2013

Vintage of the renewable energy/attribute (i.e. year of generation)	2021
Brand, label, or certification of the renewable electricity purchase	No brand, label, or certification
Comment	Commissioning Year unknown - Last Major Hydro Power station commissioned in 2013

Country/area of renewable electricity consumption	India
Sourcing method	Unbundled Energy Attribute Certificate (EAC) purchase
Renewable electricity technology type	Hydropower (capacity unknown)
Renewable electricity consumed via selected sourcing method in the reporting year (MWh)	162.41
Tracking instrument used	I-REC
Total attribute instruments retained for consumption by your organization (MWh)	163
Country/area of origin (generation) of the renewable electricity/attribute consumed	India
Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)	2013

Vintage of the renewable energy/attribute (i.e. year of generation)	2021
Brand, label, or certification of the renewable electricity purchase	No brand, label, or certification
Comment	Unbundled EACs purchased to cover electricity produced by Standby Oil Generators
Country/area of renewable electricity consumption	Indonesia
Sourcing method	Unbundled Energy Attribute Certificate (EAC) purchase
Renewable electricity technology type	Hydropower (capacity unknown)
Renewable electricity consumed via selected sourcing method in the reporting year (MWh)	10.05
Tracking instrument used
I-REC

Total attribute instruments retained for consumption by your organization (MWh)
11

Country/area of origin (generation) of the renewable electricity/attribute consumed
Indonesia

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
2018

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Commissioning Year unknown

Country/area of renewable electricity consumption
Ireland

Sourcing method
Green electricity products from an energy supplier (e.g. Green Tariffs)

Renewable electricity technology type
Renewable electricity mix, please specify (Mls of Solar / Wind & Hydro)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
38539.71

Tracking instrument used
GO

Total attribute instruments retained for consumption by your organization (MWh)
38540

Country/area of origin (generation) of the renewable electricity/attribute consumed
Ireland

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
2015

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Year of commissioning unknown as GOs sourced from multiple renewable energy producers. 2015 has been used to complete the field, and represents the midway point for RE production (TWh) between 2000 - 2021 for Europe

Country/area of renewable electricity consumption
Ireland

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Hydropower (capacity unknown)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
15.06

Tracking instrument used
GO

Total attribute instruments retained for consumption by your organization (MWh)
16

Country/area of origin (generation) of the renewable electricity/attribute consumed
Italy

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
2004

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment

Country/area of renewable electricity consumption
Israel
Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Solar

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
90.43

Tracking instrument used
I-REC

Total attribute instruments retained for consumption by your organization (MWh)
91

Country/area of origin (generation) of the renewable electricity/attribute consumed
Israel

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
2020

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Commissioning Year unknown

Country/area of renewable electricity consumption
Italy

Sourcing method
Green electricity products from an energy supplier (e.g. Green Tariffs)

Renewable electricity technology type
Renewable electricity mix, please specify (Hydro / Wind & Solar)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
68687.55

Tracking instrument used
GO

Total attribute instruments retained for consumption by your organization (MWh)
68688

Country/area of origin (generation) of the renewable electricity/attribute consumed
Italy

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
2015

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Year of commissioning unknown as GOs sourced from multiple renewable energy producers. 2015 has been used to complete the field, and represents the midway point for RE production (TWh) between 2000 - 2021 for Europe

Country/area of renewable electricity consumption
Italy

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Hydropower (capacity unknown)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
2691.69

Tracking instrument used
GO

Total attribute instruments retained for consumption by your organization (MWh)
2692

Country/area of origin (generation) of the renewable electricity/attribute consumed
Italy

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
2004

Vintage of the renewable energy/attribute (i.e. year of generation)
2021
Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment

Country/area of renewable electricity consumption
Italy

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Hydropower (capacity unknown)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
11.82

Tracking instrument used
GO

Total attribute instruments retained for consumption by your organization (MWh)
12

Country/area of origin (generation) of the renewable electricity/attribute consumed
Italy

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
2004

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Unbundled EAC purchased to cover electricity produced by standby oil generators

Country/area of renewable electricity consumption
Japan

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Renewable electricity mix, please specify (Solar & Biomass)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
89.6

Tracking instrument used
J-Credit

Total attribute instruments retained for consumption by your organization (MWh)
90

Country/area of origin (generation) of the renewable electricity/attribute consumed
Japan

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
2020

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
84MWh of Solar + 6 MWh of Biomass

Country/area of renewable electricity consumption
Jordan

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Solar

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
45.21

Tracking instrument used
I-REC

Total attribute instruments retained for consumption by your organization (MWh)
46

Country/area of origin (generation) of the renewable electricity/attribute consumed

Egypt
Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering) 2020
Vintage of the renewable energy/attribute (i.e. year of generation) 2021
Brand, label, or certification of the renewable electricity purchase No brand, label, or certification
Comment Year of commissioning unknown
Country/area of renewable electricity consumption Republic of Korea
Sourcing method Unbundled Energy Attribute Certificate (EAC) purchase
Renewable electricity technology type Hydropower (capacity unknown)
Renewable electricity consumed via selected sourcing method in the reporting year (MWh) 10.56
Tracking instrument used I-REC
Total attribute instruments retained for consumption by your organization (MWh) 11
Country/area of origin (generation) of the renewable electricity/attribute consumed China
Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering) 2018
Vintage of the renewable energy/attribute (i.e. year of generation) 2021
Brand, label, or certification of the renewable electricity purchase No brand, label, or certification
Comment Year of commissioning unknown
Country/area of renewable electricity consumption Kuwait
Sourcing method Unbundled Energy Attribute Certificate (EAC) purchase
Renewable electricity technology type Solar
Renewable electricity consumed via selected sourcing method in the reporting year (MWh) 45.21
Tracking instrument used I-REC
Total attribute instruments retained for consumption by your organization (MWh) 46
Country/area of origin (generation) of the renewable electricity/attribute consumed United Arab Emirates
Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering) 2020
Vintage of the renewable energy/attribute (i.e. year of generation) 2021
Brand, label, or certification of the renewable electricity purchase No brand, label, or certification
Comment Year of commissioning unknown
Country/area of renewable electricity consumption Latvia
Sourcing method Unbundled Energy Attribute Certificate (EAC) purchase
Renewable electricity technology type Hydropower (capacity unknown)
Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
Tracking instrument used
GO

Total attribute instruments retained for consumption by your organization (MWh)
4

Country/area of origin (generation) of the renewable electricity/attribute consumed
Italy

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
2004

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment

Country/area of renewable electricity consumption
Lithuania

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Hydropower (capacity unknown)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
153.57

Tracking instrument used
GO

Total attribute instruments retained for consumption by your organization (MWh)
154

Country/area of origin (generation) of the renewable electricity/attribute consumed
Italy

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
2004

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment

Country/area of renewable electricity consumption
Luxembourg

Sourcing method
Green electricity products from an energy supplier (e.g. Green Tariffs)

Renewable electricity technology type
Hydropower (capacity unknown)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
335.04

Tracking instrument used
GO

Total attribute instruments retained for consumption by your organization (MWh)
336

Country/area of origin (generation) of the renewable electricity/attribute consumed
Italy

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
2004

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment

Country/area of renewable electricity consumption
Malaysia

Sourcing method
CDP
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Hydropower (capacity unknown)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
24.57

Tracking instrument used
I-REC

Total attribute instruments retained for consumption by your organization (MWh)
25

Country/area of origin (generation) of the renewable electricity/attribute consumed
Malaysia

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
2020

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Year of commissioning unknown

Country/area of renewable electricity consumption
Malta

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Renewable electricity mix, please specify (Mix Solar / Hydro / Wind)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
270.37

Tracking instrument used
GO

Total attribute instruments retained for consumption by your organization (MWh)
271

Country/area of origin (generation) of the renewable electricity/attribute consumed
Italy

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
2004

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment

Country/area of renewable electricity consumption
Mexico

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Wind

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
1594.6

Tracking instrument used
I-REC

Total attribute instruments retained for consumption by your organization (MWh)
1595

Country/area of origin (generation) of the renewable electricity/attribute consumed
Mexico

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
2020

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification
<table>
<thead>
<tr>
<th>Comment</th>
<th>Commissioning year unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country/area of renewable electricity consumption</td>
<td>Morocco</td>
</tr>
<tr>
<td>Sourcing method</td>
<td>Unbundled Energy Attribute Certificate (EAC) purchase</td>
</tr>
<tr>
<td>Renewable electricity technology type</td>
<td>Wind</td>
</tr>
<tr>
<td>Renewable electricity consumed via selected sourcing method in the reporting year (MWh)</td>
<td>45.21</td>
</tr>
<tr>
<td>Tracking instrument used</td>
<td>I-REC</td>
</tr>
<tr>
<td>Total attribute instruments retained for consumption by your organization (MWh)</td>
<td>46</td>
</tr>
<tr>
<td>Country/area of origin (generation) of the renewable electricity/attribute consumed</td>
<td>Morocco</td>
</tr>
<tr>
<td>Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)</td>
<td>2020</td>
</tr>
<tr>
<td>Vintage of the renewable energy/attribute (i.e. year of generation)</td>
<td>2021</td>
</tr>
<tr>
<td>Brand, label, or certification of the renewable electricity purchase</td>
<td>No brand, label, or certification</td>
</tr>
<tr>
<td>Comment</td>
<td>Year of commissioning unknown</td>
</tr>
<tr>
<td>Country/area of renewable electricity consumption</td>
<td>Netherlands</td>
</tr>
<tr>
<td>Sourcing method</td>
<td>Green electricity products from an energy supplier (e.g. Green Tariffs)</td>
</tr>
<tr>
<td>Renewable electricity technology type</td>
<td>Renewable electricity mix, please specify (Mix Wind / Solar / Hydro)</td>
</tr>
<tr>
<td>Renewable electricity consumed via selected sourcing method in the reporting year (MWh)</td>
<td>6364.04</td>
</tr>
<tr>
<td>Tracking instrument used</td>
<td>GO</td>
</tr>
<tr>
<td>Total attribute instruments retained for consumption by your organization (MWh)</td>
<td>6365</td>
</tr>
<tr>
<td>Country/area of origin (generation) of the renewable electricity/attribute consumed</td>
<td>Netherlands</td>
</tr>
<tr>
<td>Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)</td>
<td>2015</td>
</tr>
<tr>
<td>Vintage of the renewable energy/attribute (i.e. year of generation)</td>
<td>2021</td>
</tr>
<tr>
<td>Brand, label, or certification of the renewable electricity purchase</td>
<td>No brand, label, or certification</td>
</tr>
<tr>
<td>Comment</td>
<td>Year of commissioning unknown as GOs sourced from multiple renewable energy producers. 2015 has been used to complete the field, and represents the midway point for RE production (TWh) between 2000 - 2021 for Europe</td>
</tr>
<tr>
<td>Country/area of renewable electricity consumption</td>
<td>Netherlands</td>
</tr>
<tr>
<td>Sourcing method</td>
<td>Unbundled Energy Attribute Certificate (EAC) purchase</td>
</tr>
<tr>
<td>Renewable electricity technology type</td>
<td>Hydropower (capacity unknown)</td>
</tr>
<tr>
<td>Renewable electricity consumed via selected sourcing method in the reporting year (MWh)</td>
<td>37.27</td>
</tr>
<tr>
<td>Tracking instrument used</td>
<td>GO</td>
</tr>
<tr>
<td>Total attribute instruments retained for consumption by your organization (MWh)</td>
<td>38</td>
</tr>
<tr>
<td>Country/area of origin (generation) of the renewable electricity/attribute consumed</td>
<td>Italy</td>
</tr>
</tbody>
</table>
Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
2004

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment

Country/area of renewable electricity consumption
New Zealand

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Renewable electricity mix, please specify (Wind / Solar / Hydro)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
45.21

Tracking instrument used
Other, please specify (NZ-EC)

Total attribute instruments retained for consumption by your organization (MWh)
46

Country/area of origin (generation) of the renewable electricity/attribute consumed
New Zealand

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
2020

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
44MWh commissioned in 2020 2 MWh commissioned in 2011

Country/area of renewable electricity consumption
Nigeria

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Hydropower (capacity unknown)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
45.21

Tracking instrument used
I-REC

Total attribute instruments retained for consumption by your organization (MWh)
46

Country/area of origin (generation) of the renewable electricity/attribute consumed
Nigeria

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
2010

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Year of commissioning unknown

Country/area of renewable electricity consumption
Norway

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Renewable electricity mix, please specify (Mix Hydro / Wind / Solar)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
56.14
Tracking instrument used
GO
Total attribute instruments retained for consumption by your organization (MWh)
57
Country/area of origin (generation) of the renewable electricity/attribute consumed
Italy
Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
2004
Vintage of the renewable energy/attribute (i.e. year of generation)
2021
Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification
Comment

Country/area of renewable electricity consumption
Oman
Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase
Renewable electricity technology type
Solar
Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
0.39
Tracking instrument used
I-REC
Total attribute instruments retained for consumption by your organization (MWh)
1
Country/area of origin (generation) of the renewable electricity/attribute consumed
United Arab Emirates
Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
2020
Vintage of the renewable energy/attribute (i.e. year of generation)
2021
Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification
Comment

Country/area of renewable electricity consumption
Pakistan
Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase
Renewable electricity technology type
Hydropower (capacity unknown)
Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
0.01
Tracking instrument used
I-REC
Total attribute instruments retained for consumption by your organization (MWh)
1
Country/area of origin (generation) of the renewable electricity/attribute consumed
India
Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
2013
Vintage of the renewable energy/attribute (i.e. year of generation)
2021
Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification
Comment

Country/area of renewable electricity consumption
Russian Federation
Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase
Renewable electricity technology type
Hydropower (capacity unknown)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
460.71

Tracking instrument used
I-REC

Total attribute instruments retained for consumption by your organization (MWh)
461

Country/area of origin (generation) of the renewable electricity/attribute consumed
Russian Federation

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
2000

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Year of commissioning unknown

Country/area of renewable electricity consumption
Panama

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Renewable electricity mix, please specify (Solar & Hydro)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
326.06

Tracking instrument used
I-REC

Total attribute instruments retained for consumption by your organization (MWh)
327

Country/area of origin (generation) of the renewable electricity/attribute consumed
Guatemala

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
2020

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Year of commissioning unknown

Country/area of renewable electricity consumption
Peru

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Hydropower (capacity unknown)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
188.52

Tracking instrument used
I-REC

Total attribute instruments retained for consumption by your organization (MWh)
188

Country/area of origin (generation) of the renewable electricity/attribute consumed
Peru

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
2000

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Year of commissioning unknown
<table>
<thead>
<tr>
<th>Country/area of renewable electricity consumption</th>
<th>Philippines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sourcing method</td>
<td>Unbundled Energy Attribute Certificate (EAC) purchase</td>
</tr>
<tr>
<td>Renewable electricity technology type</td>
<td>Geothermal</td>
</tr>
<tr>
<td>Renewable electricity consumed via selected sourcing method in the reporting year (MWh)</td>
<td>0.78</td>
</tr>
<tr>
<td>Tracking instrument used</td>
<td>I-REC</td>
</tr>
<tr>
<td>Total attribute instruments retained for consumption by your organization (MWh)</td>
<td>1</td>
</tr>
<tr>
<td>Country/area of origin (generation) of the renewable electricity/attribute consumed</td>
<td>Philippines</td>
</tr>
<tr>
<td>Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)</td>
<td>2020</td>
</tr>
<tr>
<td>Vintage of the renewable energy/attribute (i.e. year of generation)</td>
<td>2021</td>
</tr>
<tr>
<td>Brand, label, or certification of the renewable electricity purchase</td>
<td>No brand, label, or certification</td>
</tr>
<tr>
<td>Comment</td>
<td>Year of commissioning unknown</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country/area of renewable electricity consumption</th>
<th>Poland</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sourcing method</td>
<td>Unbundled Energy Attribute Certificate (EAC) purchase</td>
</tr>
<tr>
<td>Renewable electricity technology type</td>
<td>Wind</td>
</tr>
<tr>
<td>Renewable electricity consumed via selected sourcing method in the reporting year (MWh)</td>
<td>22.15</td>
</tr>
<tr>
<td>Tracking instrument used</td>
<td>GO</td>
</tr>
<tr>
<td>Total attribute instruments retained for consumption by your organization (MWh)</td>
<td>23</td>
</tr>
<tr>
<td>Country/area of origin (generation) of the renewable electricity/attribute consumed</td>
<td>Poland</td>
</tr>
<tr>
<td>Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)</td>
<td>2015</td>
</tr>
<tr>
<td>Vintage of the renewable energy/attribute (i.e. year of generation)</td>
<td>2021</td>
</tr>
<tr>
<td>Brand, label, or certification of the renewable electricity purchase</td>
<td>No brand, label, or certification</td>
</tr>
<tr>
<td>Comment</td>
<td>Year of commissioning unknown</td>
</tr>
<tr>
<td></td>
<td>Polish Guarantees of Origin procured and cancelled.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country/area of renewable electricity consumption</th>
<th>Portugal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sourcing method</td>
<td>Unbundled Energy Attribute Certificate (EAC) purchase</td>
</tr>
<tr>
<td>Renewable electricity technology type</td>
<td>Hydropower (capacity unknown)</td>
</tr>
<tr>
<td>Renewable electricity consumed via selected sourcing method in the reporting year (MWh)</td>
<td>4.27</td>
</tr>
<tr>
<td>Tracking instrument used</td>
<td>GO</td>
</tr>
<tr>
<td>Total attribute instruments retained for consumption by your organization (MWh)</td>
<td>5</td>
</tr>
<tr>
<td>Country/area of origin (generation) of the renewable electricity/attribute consumed</td>
<td>Italy</td>
</tr>
<tr>
<td>Country/area of renewable electricity consumption</td>
<td>Qatar</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
</tr>
<tr>
<td>Sourcing method</td>
<td>Unbundled Energy Attribute Certificate (EAC) purchase</td>
</tr>
<tr>
<td>Renewable electricity technology type</td>
<td>Solar</td>
</tr>
<tr>
<td>Renewable electricity consumed via selected sourcing method in the reporting year (MWh)</td>
<td>90.43</td>
</tr>
<tr>
<td>Total attribute instruments retained for consumption by your organization (MWh)</td>
<td>91</td>
</tr>
<tr>
<td>Country/area of origin (generation) of the renewable electricity/attribute consumed</td>
<td>United Arab Emirates</td>
</tr>
</tbody>
</table>

Comment
- Qatar: Year of commissioning unknown
- Romania: Year of commissioning unknown
- Saudi Arabia: Year of commissioning unknown
Total attribute instruments retained for consumption by your organization (MWh)
46

Country/area of origin (generation) of the renewable electricity/attribute consumed
United Arab Emirates

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
2020

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Year of commissioning unknown

Country/area of renewable electricity consumption
Serbia

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Hydropower (capacity unknown)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
270.37

Tracking instrument used
GO

Total attribute instruments retained for consumption by your organization (MWh)
271

Country/area of origin (generation) of the renewable electricity/attribute consumed
Italy

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
2004

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment

Country/area of renewable electricity consumption
Singapore

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Solar

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
190.65

Tracking instrument used
I-REC

Total attribute instruments retained for consumption by your organization (MWh)
191

Country/area of origin (generation) of the renewable electricity/attribute consumed
Singapore

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
2020

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Year of commissioning unknown

Country/area of renewable electricity consumption
Slovakia

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase
<table>
<thead>
<tr>
<th>Country/area of renewable electricity consumption</th>
<th>Slovenia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sourcing method</td>
<td>Unbundled Energy Attribute Certificate (EAC) purchase</td>
</tr>
<tr>
<td>Renewable electricity technology type</td>
<td>Hydropower (capacity unknown)</td>
</tr>
<tr>
<td>Renewable electricity consumed via selected sourcing method in the reporting year (MWh)</td>
<td>270.37</td>
</tr>
<tr>
<td>Tracking instrument used</td>
<td>GO</td>
</tr>
<tr>
<td>Total attribute instruments retained for consumption by your organization (MWh)</td>
<td>271</td>
</tr>
<tr>
<td>Country/area of origin (generation) of the renewable electricity/attribute consumed</td>
<td>Italy</td>
</tr>
<tr>
<td>Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)</td>
<td>2004</td>
</tr>
<tr>
<td>Vintage of the renewable energy/attribute (i.e. year of generation)</td>
<td>2021</td>
</tr>
<tr>
<td>Brand, label, or certification of the renewable electricity purchase</td>
<td>No brand, label, or certification</td>
</tr>
<tr>
<td>Comment</td>
<td>Year of commissioning unknown</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country/area of renewable electricity consumption</th>
<th>South Africa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sourcing method</td>
<td>Unbundled Energy Attribute Certificate (EAC) purchase</td>
</tr>
<tr>
<td>Renewable electricity technology type</td>
<td>Solar</td>
</tr>
<tr>
<td>Renewable electricity consumed via selected sourcing method in the reporting year (MWh)</td>
<td>122.99</td>
</tr>
<tr>
<td>Tracking instrument used</td>
<td>I-REC</td>
</tr>
<tr>
<td>Total attribute instruments retained for consumption by your organization (MWh)</td>
<td>123</td>
</tr>
<tr>
<td>Country/area of origin (generation) of the renewable electricity/attribute consumed</td>
<td>South Africa</td>
</tr>
<tr>
<td>Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)</td>
<td>2020</td>
</tr>
<tr>
<td>Vintage of the renewable energy/attribute (i.e. year of generation)</td>
<td>2021</td>
</tr>
<tr>
<td>Brand, label, or certification of the renewable electricity purchase</td>
<td>No brand, label, or certification</td>
</tr>
<tr>
<td>Comment</td>
<td>Year of commissioning unknown</td>
</tr>
</tbody>
</table>
Country/area of renewable electricity consumption
Spain

Sourcing method
Green electricity products from an energy supplier (e.g. Green Tariffs)

Renewable electricity technology type
Renewable electricity mix, please specify (Mix of hydro / solar / and wind)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
165.43

Tracking instrument used
GO

Total attribute instruments retained for consumption by your organization (MWh)
166

Country/area of origin (generation) of the renewable electricity/attribute consumed
Italy

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
2015

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Year of commissioning unknown as GOs sourced from multiple renewable energy producers. 2015 has been used to complete the field, and represents the midway point for RE production (TWh) between 2000 - 2021 for Europe

Country/area of renewable electricity consumption
Sweden

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Hydropower (capacity unknown)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
653.33

Tracking instrument used
GO

Total attribute instruments retained for consumption by your organization (MWh)
654

Country/area of origin (generation) of the renewable electricity/attribute consumed
Italy

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
2004

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment

Country/area of renewable electricity consumption
Switzerland

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Hydropower (capacity unknown)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
2424.04

Tracking instrument used
GO

Total attribute instruments retained for consumption by your organization (MWh)
2425

Country/area of origin (generation) of the renewable electricity/attribute consumed
Italy

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
2004

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment

Country/area of renewable electricity consumption
Taiwan, China

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Hydropower (capacity unknown)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
135.64

Tracking instrument used
I-REC

Total attribute instruments retained for consumption by your organization (MWh)
136

Country/area of origin (generation) of the renewable electricity/attribute consumed
Taiwan, China

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
2002

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment

Country/area of renewable electricity consumption
Thailand

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Solar

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
2.16

Tracking instrument used
I-REC

Total attribute instruments retained for consumption by your organization (MWh)
2.16

Country/area of origin (generation) of the renewable electricity/attribute consumed
Thailand

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
2020

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Year of commissioning unknown

Country/area of renewable electricity consumption
Turkey

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Hydropower (capacity unknown)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
0.31

Tracking instrument used
I-REC

Total attribute instruments retained for consumption by your organization (MWh)
1
Country/area of origin (generation) of the renewable electricity/attribute consumed
Turkey

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
2010

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Year of commissioning unknown

Country/area of renewable electricity consumption
Ukraine

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Hydropower (capacity unknown)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
460.7

Tracking instrument used
GO

Total attribute instruments retained for consumption by your organization (MWh)
461

Country/area of origin (generation) of the renewable electricity/attribute consumed
Italy

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
2004

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment

Country/area of renewable electricity consumption
United Arab Emirates

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Solar

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
28.93

Tracking instrument used
I-REC

Total attribute instruments retained for consumption by your organization (MWh)
29

Country/area of origin (generation) of the renewable electricity/attribute consumed
United Arab Emirates

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
2020

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Year of commissioning unknown

Country/area of renewable electricity consumption
United Kingdom of Great Britain and Northern Ireland

Sourcing method
Green electricity products from an energy supplier (e.g. Green Tariffs)

Renewable electricity technology type
Renewable electricity mix, please specify (Mix of Hydro / Solar and Wind)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
Tracking instrument used
REGO

Country/area of origin (generation) of the renewable electricity/attribute consumed
United Kingdom of Great Britain and Northern Ireland

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
2015

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Year of commissioning unknown as REGOs sourced from multiple renewable energy producers. 2015 has been used to complete the field, and represents the midway point for RE production (TWh) between 2000 - 2021 for Europe

Country/area of renewable electricity consumption
United Kingdom of Great Britain and Northern Ireland

Sourcing method
Direct line to an off-site generator owned by a third party with no grid transfers

Renewable electricity technology type
Solar

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
20.92

Tracking instrument used
REGO

Country/area of origin (generation) of the renewable electricity/attribute consumed
United Kingdom of Great Britain and Northern Ireland

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
2015

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment

Year of commissioning unknown as REGOs sourced from multiple renewable energy producers. 2015 has been used to complete the field, and represents the midway point for RE production (TWh) between 2000 - 2021 for Europe
Country/area of renewable electricity consumption
United States of America

Sourcing method
Green electricity products from an energy supplier (e.g. Green Tariffs)

Renewable electricity technology type
Renewable electricity mix, please specify (Mix Hydro / Solar & Wind)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
3605.35

Tracking instrument used
US-REC

Total attribute instruments retained for consumption by your organization (MWh)
3606

Country/area of origin (generation) of the renewable electricity/attribute consumed
United States of America

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
2018

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Year of commissioning unknown

Country/area of renewable electricity consumption
United States of America

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Hydropower (capacity unknown)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
20348.12

Tracking instrument used
US-REC

Total attribute instruments retained for consumption by your organization (MWh)
20349

Country/area of origin (generation) of the renewable electricity/attribute consumed
United States of America

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
1985

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Year of commissioning unknown

Country/area of renewable electricity consumption
Venezuela (Bolivarian Republic of)

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Solar

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
766.11

Tracking instrument used
I-REC

Total attribute instruments retained for consumption by your organization (MWh)
767

Country/area of origin (generation) of the renewable electricity/attribute consumed
Brazil

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
2020

Comment
Year of commissioning unknown
Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Unknown year of commissioning.

Country/area of renewable electricity consumption
Viet Nam

Sourcing method
Unbundled Energy Attribute Certificate (EAC) purchase

Renewable electricity technology type
Hydropower (capacity unknown)

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
1.04

Tracking instrument used
I-REC

Total attribute instruments retained for consumption by your organization (MWh)
1

Country/area of origin (generation) of the renewable electricity/attribute consumed
Viet Nam

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
2010

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Commissioning Year Unknown

Country/area of renewable electricity consumption
United Kingdom of Great Britain and Northern Ireland

Sourcing method
Direct procurement from an offsite grid-connected generator e.g. Power Purchase Agreement (PPA)

Renewable electricity technology type
Wind

Renewable electricity consumed via selected sourcing method in the reporting year (MWh)
405979

Tracking instrument used
REGO

Total attribute instruments retained for consumption by your organization (MWh)
385

Country/area of origin (generation) of the renewable electricity/attribute consumed
United Kingdom of Great Britain and Northern Ireland

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
2017

Vintage of the renewable energy/attribute (i.e. year of generation)
2021

Brand, label, or certification of the renewable electricity purchase
No brand, label, or certification

Comment
Multiple Windfarm PPAs from 2014 - 2017

C8.2i

(C8.2i) Provide details of your organization’s low-carbon heat, steam, and cooling purchases in the reporting year by country.
(C8.2j) Provide details of your organization’s renewable electricity generation by country in the reporting year.

Country/area of generation
United Kingdom of Great Britain and Northern Ireland

Renewable electricity technology type
Solar

Facility capacity (MW)
8

Total renewable electricity generated by this facility in the reporting year (MWh)
20.92

Renewable electricity directly consumed by your organization from this facility in the reporting year for which certificates were not issued (MWh)
0

Renewable electricity directly consumed by your organization from this facility in the reporting year for which certificates were issued and retired (MWh)
20.92

Renewable electricity sold to the grid in the reporting year (MWh)
0

Certificates issued for the renewable electricity that was sold to the grid (MWh)
0

Certificates issued and retired for self-consumption for the renewable electricity that was sold to the grid (MWh)
0

Type of energy attribute certificate
REGO

Total self-generation counted towards RE100 target (MWh) [Auto-calculated]
20.92

Comment

C8.2k

(C8.2k) Describe how your organization’s renewable electricity sourcing strategy directly or indirectly contributes to bringing new capacity into the grid in the countries/areas in which you operate.

BT is the joint-largest private purchaser of electricity in the UK. Since 2020 BT has achieved its aspirations to run its global operations on renewable electricity where markets allow and will purchase the remainder from neighbouring markets until local solutions can be found.

While challenges remain in sourcing renewable electricity in some countries, collaboration with members of the RE100 initiative is helping to make improvements in supplies.

BT’s transition to renewable electricity has been delivered through supporting the development of local renewable energy markets, with 15.9% of our worldwide power supplied through corporate Power Purchase Agreements (PPAs) and the remainder from high quality green tariffs or in a small number of markets, renewable certificates.

BT continually reviews the market for new opportunities including PPA, direct wire agreements, and onsite generation to encourage additionality within the UK market where 99% of its consumption is derived.

As one of the founding members of the RE100, we believe achieving and maintaining 100% renewable electricity status globally sends strong market signals and encourages our suppliers, customers and telecom partners to join us on the transition to Net Zero.

C8.2l

(C8.2l) In the reporting year, has your organization faced any challenges to sourcing renewable electricity?

<table>
<thead>
<tr>
<th>Challenges to sourcing renewable electricity</th>
<th>Challenges faced by your organization which were not country-specific</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes, in specific countries/areas in which we operate</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>
C8.2m) Provide details of the country-specific challenges to sourcing renewable electricity faced by your organization in the reporting year.

<table>
<thead>
<tr>
<th>Country/area</th>
<th>Reason(s) why it was challenging to source renewable electricity within selected country/area</th>
<th>Provide additional details of the barriers faced within this country/area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sri Lanka</td>
<td>Inability to buy Energy Attribute Certificates (EACs) in small quantities</td>
<td>Unable to source unbundled EACs</td>
</tr>
<tr>
<td></td>
<td>Lack of credible renewable electricity procurement options (e.g., EACs, Green Tariffs)</td>
<td></td>
</tr>
<tr>
<td>Republic of Korea</td>
<td>Inability to buy Energy Attribute Certificates (EACs) in small quantities</td>
<td>Unable to source unbundled EACs</td>
</tr>
<tr>
<td></td>
<td>Lack of credible renewable electricity procurement options (e.g., EACs, Green Tariffs)</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Inability to buy Energy Attribute Certificates (EACs) in small quantities</td>
<td>Unable to source unbundled EACs</td>
</tr>
<tr>
<td></td>
<td>Lack of credible renewable electricity procurement options (e.g., EACs, Green Tariffs)</td>
<td></td>
</tr>
<tr>
<td>Kazakhstan</td>
<td>Inability to buy Energy Attribute Certificates (EACs) in small quantities</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lack of credible renewable electricity procurement options (e.g., EACs, Green Tariffs)</td>
<td></td>
</tr>
<tr>
<td>Ukraine</td>
<td>Inability to buy Energy Attribute Certificates (EACs) in small quantities</td>
<td>Until March 2022 the Ukraine energy system was not connected to the EU, it is now, so going forward it will be possible to by EACs or GOs to cover consumption in this country</td>
</tr>
</tbody>
</table>

C9. Additional metrics

C9.1

(C9.1) Provide any additional climate-related metrics relevant to your business.

<table>
<thead>
<tr>
<th>Description</th>
<th>Metric value</th>
<th>Metric numerator</th>
<th>Metric denominator (intensity metric only)</th>
<th>% change from previous year</th>
<th>Direction of change</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy usage</td>
<td>3311</td>
<td>GWh</td>
<td></td>
<td>0.3</td>
<td>Decreased</td>
<td>Energy usage has decreased slightly from FY21, from 3320 GWh to 3311 GWh. Savings due to our investments in cooling system upgrades and other energy efficiency projects were partly offset by an increase in vehicle fuel consumption to support fibre roll out.</td>
</tr>
</tbody>
</table>

C10. Verification

C10.1

(C10.1) Indicate the verification/assurance status that applies to your reported emissions.

<table>
<thead>
<tr>
<th>Scope</th>
<th>Verification/assurance status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope 1</td>
<td>Third-party verification or assurance process in place</td>
</tr>
<tr>
<td>Scope 2 (location-based or market-based)</td>
<td>Third-party verification or assurance process in place</td>
</tr>
<tr>
<td>Scope 3</td>
<td>Third-party verification or assurance process in place</td>
</tr>
</tbody>
</table>

C10.1a
(C10.1a) Provide further details of the verification/assurance undertaken for your Scope 1 emissions, and attach the relevant statements.

Verification or assurance cycle in place
Annual process

Status in the current reporting year
Complete

Type of verification or assurance
High assurance

Attach the statement
2022-lrqa-independent-assurance-statement.pdf
2022-manifesto-report.pdf

Page/section reference
Assurance statement- all is relevant.
Manifesto Report- assured carbon data is found on pages 21-22.

Relevant standard
AA1000AS

Proportion of reported emissions verified (%)
100

(C10.1b) Provide further details of the verification/assurance undertaken for your Scope 2 emissions and attach the relevant statements.

Scope 2 approach
Scope 2 market-based

Verification or assurance cycle in place
Annual process

Status in the current reporting year
Complete

Type of verification or assurance
High assurance

Attach the statement
2022-lrqa-independent-assurance-statement.pdf
2022-manifesto-report.pdf

Page/section reference
Assurance statement- all is relevant
Manifesto Report- assured carbon data is found on pages 21-22.

Relevant standard
AA1000AS

Proportion of reported emissions verified (%)
100

(C10.1c)
(C10.1c) Provide further details of the verification/assurance undertaken for your Scope 3 emissions and attach the relevant statements.

Scope 3 category
- Scope 3: Purchased goods and services
- Scope 3: Capital goods
- Scope 3: Fuel and energy-related activities (not included in Scopes 1 or 2)
- Scope 3: Upstream transportation and distribution
- Scope 3: Waste generated in operations
- Scope 3: Business travel
- Scope 3: Employee commuting
- Scope 3: Upstream leased assets
- Scope 3: Use of sold products
- Scope 3: End-of-life treatment of sold products

Verification or assurance cycle in place
Annual process

Status in the current reporting year
Complete

Type of verification or assurance
High assurance

Attach the statement
2022-lrqa-independent-assurance-statement.pdf
2022-manifesto-report.pdf

Page/section reference
Assurance statement - all is relevant
Manifesto Report - assured carbon data is found on pages 21-22.

Relevant standard
AA1000AS

Proportion of reported emissions verified (%)
100

C10.2

(C10.2) Do you verify any climate-related information reported in your CDP disclosure other than the emissions figures reported in C6.1, C6.3, and C6.5?
Yes

C10.2a

(C10.2a) Which data points within your CDP disclosure have been verified, and which verification standards were used?

<table>
<thead>
<tr>
<th>Disclosure module verification relates to</th>
<th>Data verified</th>
<th>Verification standard</th>
<th>Please explain</th>
</tr>
</thead>
</table>
| C4. Targets and performance | Year on year change in emissions (Scope 1 and 2) | AA1000AS | LRQA was commissioned by BT Group plc (BT) to provide independent assurance on its Manifesto Report 2021/22 ("the report") against the assurance criteria below to a reasonable level of assurance and at the materiality of the professional judgement of the verifier using Accountability's AA1000AS v3. LRQA's verification procedure is based on current best practice, is in accordance with ISAE 3000 and ISAE 3410 and uses the following principles of - inclusivity, materiality, responsiveness and reliability of performance data. Our assurance engagement covered BT's worldwide operations and activities and specifically the following requirements:
- Reviewing adherence to AA1000AS's Accountability Principles of Inclusivity, Materiality, Responsiveness and Impact and evaluating the reliability of the specified sustainability performance information (Type 2 engagement).
- Verifying greenhouse gas (GHG) emissions data related to BT's CDP submission, including Direct (Scope 1), Energy Indirect (Scope 2), and Other Indirect (Scope 3) as defined within the GHG Protocol Corporate Standard.
- Verifying data and information related to the UK's Streamlined Carbon and Energy Reporting (SECR) Regulations requirements. |
| C8. Energy | Year on year change in emissions (Scope 1 and 2) | AA1000AS | LRQA was commissioned by BT Group plc (BT) to provide independent assurance on its Manifesto Report 2021/22 ("the report") against the assurance criteria below to a reasonable level of assurance and at the materiality of the professional judgement of the verifier using Accountability's AA1000AS v3. LRQA's verification procedure is based on current best practice, is in accordance with ISAE 3000 and ISAE 3410 and uses the following principles of - inclusivity, materiality, responsiveness and reliability of performance data. Our assurance engagement covered BT's worldwide operations and activities and specifically the following requirements:
- Reviewing adherence to AA1000AS's Accountability Principles of Inclusivity, Materiality, Responsiveness and Impact and evaluating the reliability of the specified sustainability performance information (Type 2 engagement).
- Verifying greenhouse gas (GHG) emissions data related to BT's CDP submission, including Direct (Scope 1), Energy Indirect (Scope 2), and Other Indirect (Scope 3) as defined within the GHG Protocol Corporate Standard.
- Verifying data and information related to the UK’s Streamlined Carbon and Energy Reporting (SECR) Regulations requirements. |
| C4. Targets and performance | Year on year change in emissions (Scope 3) | AA1000AS | LRQA was commissioned by BT Group plc (BT) to provide independent assurance on its Manifesto Report 2021/22 ("the report") against the assurance criteria below to a reasonable level of assurance and at the materiality of the professional judgement of the verifier using Accountability's AA1000AS v3. LRQA's verification procedure is based on current best practice, is in accordance with ISAE 3000 and ISAE 3410 and uses the following principles of - inclusivity, materiality, responsiveness and reliability of performance data. Our assurance engagement covered BT’s worldwide operations and activities and specifically the following requirements:
- Reviewing adherence to AA1000AS's Accountability Principles of Inclusivity, Materiality, Responsiveness and Impact and evaluating the reliability of the specified sustainability performance information (Type 2 engagement).
- Verifying greenhouse gas (GHG) emissions data related to BT's CDP submission, including Direct (Scope 1), Energy Indirect (Scope 2), and Other Indirect (Scope 3) as defined within the GHG Protocol Corporate Standard.
- Verifying data and information related to the UK's Streamlined Carbon and Energy Reporting (SECR) Regulations requirements. |
C11. Carbon pricing

C11.1

(C11.1) Are any of your operations or activities regulated by a carbon pricing system (i.e. ETS, Cap & Trade or Carbon Tax)?

No, and we do not anticipate being regulated in the next three years

C11.2

(C11.2) Has your organization originated or purchased any project-based carbon credits within the reporting period?

No

C11.3

(C11.3) Does your organization use an internal price on carbon?

Yes

C11.3a

(C11.3a) Provide details of how your organization uses an internal price on carbon.

Objective for implementing an internal carbon price
- Change internal behavior
- Drive energy efficiency
- Drive low-carbon investment
- Identify and seize low-carbon opportunities

GHG Scope
- Scope 1
- Scope 2
- Scope 3

Application
BT uses an overarching carbon price in its strategy development, based on our scenario analysis work. We also assess different carbon abatement projects based on current and expected future market rates.

Actual price(s) used (Currency / metric ton)
50

Variance of price(s) used
BT’s core transition scenario assumes a carbon price of £50 / tCO2 by 2030 ($64) (Source: NGFS 2°C Orderly immediate transition, with CDR). This is applied uniformly across the business. Prices for carbon abatement projects vary widely; for example, carbon offsetting projects may vary between £7.34 and £63 depending on geographic scope and purchase timeframe (Source: Future Demand, Supply and Prices for Voluntary Carbon Credits – Keeping the Balance [trove-research.com/wp-content/uploads/2021/06/Trove-Research-Carbon-Credit-Demand-Supply-and-Prices-1-June-2021.pdf]; Woodland Carbon Code [www.woodlandcarboncode.org.uk/buy-carbon/how-to-buy]).

Type of internal carbon price
- Implicit price
- Offsets

Impact & implication
We track developments and prices in UK and international voluntary carbon offsets market to inform our net zero strategy (especially for setting targets) and to assess our climate-related risks. The carbon price incorporated into BT’s core transition scenario informs the glidepath towards our carbon targets. Carbon prices used in our scenario analysis, performed in line with the Taskforce for Climate-Related Financial Disclosures (TCFD) framework, informs our understanding of carbon pricing costs if the world commits to meeting the temperature goals of the Paris Agreements and carbon pricing expands into key jurisdictions. A shadow price is not applied when considering options for individual capex and opex projects, such as whether to use gas or electric heating in a building; the lower carbon option is the only option considered, in line with BT’s Manifesto commitments.

C12. Engagement

C12.1

(C12.1) Do you engage with your value chain on climate-related issues?

Yes, our suppliers
Yes, our customers/clients
Yes, other partners in the value chain
C12.1a

(C12.1a) Provide details of your climate-related supplier engagement strategy.

<table>
<thead>
<tr>
<th>Type of engagement</th>
<th>Details of engagement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engagement & incentivization</td>
<td>Run an engagement campaign to educate suppliers about climate change</td>
</tr>
<tr>
<td>% of suppliers by number</td>
<td>2.5</td>
</tr>
<tr>
<td>% total procurement spend</td>
<td>(direct and indirect)</td>
</tr>
<tr>
<td>% of supplier-related Scope 3 emissions as reported in C6.5</td>
<td>73</td>
</tr>
</tbody>
</table>

Rationale for the coverage of your engagement

Our target is to reduce supply chain emissions by 42% by 2031, and achieve net zero by 2041. We engage with suppliers in a variety of ways. For example, in FY22 we sent a letter to more than 400 global suppliers (selected because they represented 73% of our supplier-related scope 3 emissions), asking them to set a 1.5°C aligned/net zero science-based target, purchase 100% renewable electricity, and engage with their own suppliers on climate issues.

Impact of engagement, including measures of success

Our overarching measure of success is our progress on our carbon goals. Our overall target is to reduce supply chain emissions by 42% by 2031, and achieve net zero by 2041. We’ve cut our supply chain emissions by 28% since FY17, reflecting the success of our range of supply chain initiatives.

With respect to the 400 global suppliers initiative, we found that 84% of respondents have either set a net zero target or plan to do so, and 73% purchase renewable electricity or have plans to do so. Ideally we would like all suppliers to meet these performance levels, but the current level was considered a positive result, considering current penetration rates of these initiatives in industry. For example, one study found that, of 54,000 companies, barely 6% had a net zero target, and of these, more than 70% were not underpinned by science-based reduction targets (southpole.com/the-push-and-pull-of-net-zero). The “Telecommunications services” industry ranks 15th out of 55 industries in terms of number of companies having set/committed to setting a science-based target in the Science based Target Initiative’s database, with 87 companies, mainly in Europe, although only 24 of these are “net zero committed”.

For suppliers that have met neither criteria, we sent a letter with links to some resources that they might find useful, and invited them to a telephone conversation with us to discuss further. We then held telephone conversations with those suppliers who responded to understand the barriers and share our experience.

Comment

C12.1b

(C12.1b) Give details of your climate-related engagement strategy with your customers.

<table>
<thead>
<tr>
<th>Type of engagement & Details of engagement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Education/information sharing Run an engagement campaign to educate customers about the climate change impacts of (using) your products, goods, and/or services</td>
</tr>
<tr>
<td>% of customers by number</td>
</tr>
<tr>
<td>% of customer-related Scope 3 emissions as reported in C6.5</td>
</tr>
</tbody>
</table>

Please explain the rationale for selecting this group of customers and scope of engagement

54% of our customer-related scope 3 emissions relate to individual consumers. Engaging with this group is essential if we are to meet our goals to help customers avoid 60m tonnes of CO2e by 2030 and to achieve net zero for our customer emissions by 31 March 2041. BT has a relationship with more than 45% of UK households, giving us a unique opportunity to promote more sustainable consumer behaviour.

Through our communication channels, we educate consumers on making lower carbon choices:

1) In FY22 we ran three consumer awareness campaigns. These include the BT Big Sofa Summit, BT Sport's Green Routine, and BT and EE's 'Not Tomorrow. Today'.
 • The BT Big Sofa Summit challenged families, friends and small businesses across the UK to hold their own climate summits.

2) We commission research into public views on climate change to inform our consumer approach:
 • Our Smarter Living Challenge, in partnership with Hubbub, identified uses of smart technology that could save the average household 1.7 tonnes of CO2e a year.

3) We are working to incorporate sustainable choices into every step of the consumer journey, and to educate consumers on the benefits:
 • In FY22, EE started selling Fairphone, the world’s first smartphone certified by EcoLabel Blue Angel. We dedicated space in store to explain the benefits, and priced the device on a lower tariff. We are also joining Eco rating, so our customers will be able to compare the green credentials of devices.
 • We encourage consumers to return unwanted products after use to reduce the embodied carbon of such equipment. EE operate a Trade In scheme, and encourage repair where possible through the Fix My Device remote diagnostic tool and same-day or next-day repair services at selected stores. To improve return rates, we charge a fee for BT home hubs and set-top boxes that are not returned at the end of the contract, and we communicate the environmental benefits of recycling these items through our marketing materials. In FY23 we will offer new sustainable broadband and TV devices, which will represent a 50% reduction in embodied carbon.
 • The Tech4Good Awards have been run by AbilityNet and BT since 2011. The 2021 awards focussed on climate change; the winning entry to the BT Young Pioneer Award was an ‘upcycling’ app. Our team will be working with the 11-year old winner to help him build and launch this app.

Impact of engagement, including measures of success

Our overarching measure of success is our progress on our carbon goals, including our new target to help customers avoid 60m tonnes of CO2e by 2030. By raising
awareness of climate change, and how smart technologies can reduce impacts, we are hoping to encourage greater adoption of these technologies, and track the carbon thus avoided. We’re working with the Carbon Trust to develop use cases to refine our definition of carbon reducing solutions and measure customer carbon savings so we can report progress towards this new target next year. Additionally, by promoting devices such as Fairphone, and encouraging recycling of unwanted products, we hope to reduce the lifecycle emissions associated with our products, thus contributing to our target to achieve net zero for our customer emissions by 31 March 2041.

We have also measured the impact of individual initiatives:

- The BT Big Sofa Summit: One in five people said they would take the learning from The Big Sofa Summit campaign to incorporate into their own lives and 23% learnt how to use tech to reduce their impact on climate change (the target was to get 15% of people taking action as a result of the campaign)
- The Smarter Living Challenge: 76% of the 61 participating households (31 consumer and 30 BT colleague households) said they would continue with these changes.
- Circularity: This year, consumers returned 1.35m home hubs and set-top boxes – 46% of these were refurbished for reuse. This equates to 573 tonnes of Waste Electronic Equipment being reused in our BT circular economy. The remaining 54% will either be refurbished next year or sent to recycling partners. We track performance on this target year-on-year, and have managed to maintain return rates despite the impact of the pandemic.

Additionally, our Insights Team conducts a quarterly consumer survey, which includes asking whether the respondent agrees that BT, “Takes its responsibilities on climate seriously.” The results are tracked internally. Our target was to be ranked in the top two telecoms companies taking responsibility on climate change seriously, as perceived by consumers; we achieved this in FY22.

Type of engagement & Details of engagement

| Collaboration & innovation | Run a campaign to encourage innovation to reduce climate change impacts |

% of customers by number

4

% of customer-related Scope 3 emissions as reported in C6.5

46

Please explain the rationale for selecting this group of customers and scope of engagement

Our UK and Republic of Ireland business customers account for c.4% of all customers (business and consumer), but represent around 46% of customer-related emissions. Thus working with them is a key part of achieving our goals to help customers avoid 60m tonnes of CO2e by 2030 and to achieve net zero for our customer emissions by 31 March 2041. Also, as many of our customers work in research, our technical expertise can help them develop solutions that aid the decarbonisation of society.

The scope of our engagement with business customers is wide-ranging. For example:

- We include climate relevant information with our products and services to encourage our customers to adopt smart technology and new ways of working. For example, our conferencing unit highlights the emissions saved by avoiding unnecessary travel through the use of web conferencing.
- The Green Tech Innovation platform finds new ways for BT to commercialise and scale new technology that supports customers in reducing their emissions. The first phase of the project focused on public sector customers, and in FY22, we continued our work with O2 on its IoT solution to monitor social housing conditions and with EverImpact to trial sensors that enable local councils to gather real-time data on greenhouse gas emissions. We conducted a study with Accenture on the potential for tech to enable a lower-carbon economy; this was launched ahead of COP 26. Following this, we launched “Green TIP IT”, which focuses on smart manufacturing solutions for the FMCG industries.
- We are providing our client, the University of Stirling, with access to our 5G network to launch a state-of-the-art environmental monitoring system. This will help local businesses make data-driven decisions on issues such as flood response.
- In December 2021, we joined forces with Hertfordshire County Council, as well as Ocado Group and the University of Hertfordshire, to transform Hatfield Business Park into a Living Lab. BT will provide its technical expertise to this test bed for ‘smart’ living technology, including drones, robots and mobility solutions.
- The BT Global Advisory Board, made up of our largest customers, has sustainability as a standing item at its annual meetings. Customers provide input on how BT can help them on their sustainability journey and provide both input and feedback to our solutions.

Impact of engagement, including measures of success

For the Green Tech Innovation platform, success is measured in terms of whether we are able to bring new solutions to our customers, and the carbon savings achieved. In FY22, O2 became one of BT’s official suppliers. The proposition is now owned by our Internet of Things Technology team, who will be working in FY23 to bring this solution to our customers. As targeted, the project with EverImpact has delivered its first proof of concept in 2022. With the help of external experts, we are developing an approach to measure the carbon savings from each partnership. We have not set a target threshold as it will depend on specific customer scenarios that we will identify through the proof of concepts we run. This work will be a critical success factor as it will provide the proof of the impact of our new solutions and this will be used in marketing materials as we scale the solutions to other customers.

With respect to our target to help customers avoid 60 million tonnes of CO2e by the end of March 2030, we are starting by refining our definition of carbon reducing solutions and measuring customer carbon savings. We will work with external consultants to develop use cases from across our range of customer solutions, and will be tracking progress against the thresholds thus defined from next year. Alongside this, the “Enable carbon savings” delivery squad of our Sustainability Forum is tasked with identifying BT products that enable customer carbon savings, and reporting the carbon abatement achieved through quarterly updates to the Executive Leadership Team Dashboard.

C12.1d
Give details of your climate-related engagement strategy with other partners in the value chain.

Colleagues

Everyone in BT has a role to play in delivering our climate strategy. Additionally, BT employs 100,000 people worldwide so has an opportunity to influence the personal carbon footprints of a high number of households.

Over the last year, we have continued to engage with our colleagues worldwide to educate, inform and help them reduce their personal carbon footprints. We regularly publish articles and videos about BT’s climate journey and action in our internal newsletters and newsfeed, BT Today and on our internal social media platform, Workplace. We asked all colleagues to make a Climate Change Resolution – a small but impactful action to reduce their carbon footprints at work and at home. We had hundreds of responses from our colleagues, with many offering suggestions of what others could do to reduce their environmental impact. We also launched our ‘Not Tomorrow, Today’ Brand campaign to excite and engage colleagues. We have various internal groups dedicated to climate and environmental issues. These include both BT Group-led and employee-led groups which support information sharing, discussion and action on general climate and environmental issues at work and at home, or on a specific environmental topic such as owning electric vehicles.

There are various forums across BT for collaboration on sustainability issues. The Sustainability Forum was launched with the aim of driving sustainable action with a focus on our customers, our people and our organisation. Objectives include: driving outcome-based sustainability initiatives through “delivery squads”; providing a platform for idea exchange; sharing best practice and fostering collaboration across the Group; and learning from our customers and suppliers. The Forum is comprised of 179 members (as of February 2022), from teams such as product, marketing, strategy and propositions, with quarterly sessions. At least two customers and one supplier are invited per session, to discuss their progress and challenge. One of the delivery squads is focussed on enabling carbon savings, with the aim of measuring & communicating enabled carbon savings for our customers through All IP, Unified comms, Cloud & IoT.

Our Colleague Board is chaired by BT’s chief executive and reports to the Group Board. Meeting at least four times per year, the Colleague Board it is a mechanism for colleagues to raise and discuss important issues directly with the BT Group CEO and develop plans for these to be addressed. Sustainability is a key issue that features regularly on the Board agenda. Alongside the Colleague Board, members of our executive team speak directly to employees through round tables, town hall debates, site visits and webchats.

Sustainability experts and opinion leaders

We know from experience that collaborating with others has helped us scale ambition, make faster progress and inspire others on climate action. That is why BT was one of the first companies to join initiatives such as RE100, the CDP supply chain programme and 1.5 Supply Chain Leaders, and became an active member in the We Mean Business Coalition.

We approach our engagement activities from a few different angles. Firstly – the sectoral approach. We work with our peers through associations such as GSMA, techUK, JAC and the European Green Digital Coalition. We work with our peers to build knowledge and expertise around the potential of ICT to help decarbonise other sectors; for example, to highlight progress made by the sector in terms of climate mitigation and the circular economy. We also pool resources to conduct audits and encourage suppliers to report to CDP.

Secondly, we engage with other companies leading on climate action, through initiatives such as We Mean Business, the UK Government’s Build Back Better Council and 1.5 Supply Chain Leaders. We work with other sector leaders to show that climate action is possible across a multitude of sectors and by working across sectors we hope to inspire companies from various industries.

Thirdly, we work with policy makers. Mutual reinforcement of government policy and corporate climate action is influential in inspiring, for example, SMEs to take climate action. By working with the UK Government in the run up to COP26 (and continuing), we ran a successful campaign with joint messaging, reinforcement and collaboration showing what the government is doing to help SMEs on net zero as well as what large corporates such as BT are doing and why it is important to come on this journey and take action on climate now.

Do your suppliers have to meet climate-related requirements as part of your organization’s purchasing process?

Yes, climate-related requirements are included in our supplier contracts
(C12.2a) Provide details of the climate-related requirements that suppliers have to meet as part of your organization’s purchasing process and the compliance mechanisms in place.

Climate-related requirement
- Setting a science-based emissions reduction target

Description of this climate related requirement
For all new contracts worth over £25m (selected as these contracts account for around 67% of total procurement spend) we are introducing a new requirement for suppliers to have a net zero science-based target in place or commit to having one within six months. Please note this is a new requirement, expanding on the success of our pioneering climate clause, through which 10 key suppliers have committed to make measurable carbon savings over the course of their contract with us. Our “percentage in compliance” figure is based on this older project.

% suppliers by procurement spend that have to comply with this climate-related requirement
67

% suppliers by procurement spend in compliance with this climate-related requirement
100

Mechanisms for monitoring compliance with this climate-related requirement
- Off-site third-party verification

Response to supplier non-compliance with this climate-related requirement
- Retain and engage

C12.3

(C12.3) Does your organization engage in activities that could either directly or indirectly influence policy, law, or regulation that may impact the climate?

Row 1

- **Direct or indirect engagement that could influence policy, law, or regulation that may impact the climate**
 - Yes, we engage directly with policy makers
 - Yes, we engage indirectly through trade associations

- **Does your organization have a public commitment or position statement to conduct your engagement activities in line with the goals of the Paris Agreement?**
 - Yes

- **Attach commitment or position statement(s)**
 - bt-manifesto.pdf

- **Describe the process(es) your organization has in place to ensure that your engagement activities are consistent with your overall climate change strategy**
 - Our Manifesto sets out our priorities and commitment to enabling growth through technology that is responsible, sustainable and inclusive, including our carbon commitments. This has Board-level governance provided by the Digital Impact & Sustainability Committee. Our relationships with Government and other politicians are managed by the policy and public affairs team. We have centralised coordination of media, political and speaking engagements, and press releases and market announcements, overseen by the Disclosure Committee.

- **Primary reason for not engaging in activities that could directly or indirectly influence policy, law, or regulation that may impact the climate**
 - <Not Applicable>

- **Explain why your organization does not engage in activities that could directly or indirectly influence policy, law, or regulation that may impact the climate**
 - <Not Applicable>

C12.3a
(C12.3a) On what policy, law, or regulation that may impact the climate has your organization been engaging directly with policy makers in the reporting year?

- Focus of policy, law, or regulation that may impact the climate
 Other, please specify (Electric vehicles)

- Specify the policy, law, or regulation on which your organization is engaging with policy makers
 Zero Emissions Vehicle Mandate (gov.uk/government/consultations/policy-design-features-for-the-car-and-van-zero-emission-vehicle-zev-mandate)

- Policy, law, or regulation geographic coverage
 National

- Country/region the policy, law, or regulation applies to
 United Kingdom of Great Britain and Northern Ireland

- Your organization’s position on the policy, law, or regulation
 Support with no exceptions

- Description of engagement with policy makers
 BT believes that greater electric vehicle adoption depends on a national charging infrastructure and incentives for converting major fleets like ours. We are partnering with other companies through EV100, the UK Electric Fleets Coalition (both led by the Climate Group) and the new Electric Vehicle Fleet Accelerator to advocate for progressive public policies to push the shift to electric. At the end of 2021, the UK Government changed the plug-in grant scheme, reducing subsidies for plug-in small and large vans and introducing a cap of 1,000 vehicles per annum per company. As a founding member of the UK EV Fleet Accelerator (EVFA), we are working with Government to address the impact of these subsidy changes on UK companies. The EVFA aims to positively influence the economics of EVs to increase wide-scale adoption.

- Details of exceptions (if applicable) and your organization’s proposed alternative approach to the policy, law or regulation
 <Not Applicable>

- Have you evaluated whether your organization’s engagement is aligned with the goals of the Paris Agreement?
 Yes, we have evaluated, and it is aligned

(C12.3b) Provide details of the trade associations your organization engages with which are likely to take a position on any policy, law or regulation that may impact the climate.

- Trade association
 Confederation of British Industry (CBI)

- Is your organization’s position on climate change consistent with theirs?
 Consistent

- Has your organization influenced, or is your organization attempting to influence their position?
 We publicly promote their current position

- State the trade association’s position on climate change, explain where your organization’s position differs, and how you are attempting to influence their position (if applicable)
 The CBI energy and climate change board brings together a group of business leaders committed to tackling the UK’s triple challenges of energy security, affordability and decarbonisation. As well as showing ambition and leadership on these issues within the business community, its members aim to work with the government to set the right conditions to attract investment in low-carbon solutions and drive consumer demand for sustainable products.

- Funding figure your organization provided to this trade association in the reporting year, if applicable (currency as selected in C0.4) (optional)
 <Not Applicable>

- Describe the aim of your organization’s funding
 <Not Applicable>

- Have you evaluated whether your organization’s engagement with this trade association is aligned with the goals of the Paris Agreement?
 Yes, we have evaluated, and it is aligned

- Trade association
 Other, please specify (techUK)

- Is your organization’s position on climate change consistent with theirs?
 Consistent

- Has your organization influenced, or is your organization attempting to influence their position?
 We publicly promote their current position

- State the trade association’s position on climate change, explain where your organization’s position differs, and how you are attempting to influence their position (if applicable)
 techUK represents the companies and technologies that are defining today the world that we will live in tomorrow. More than 900 companies are members of techUK. Collectively they employ approximately 700,000 people, about half of all tech sector jobs in the UK.

 Senior officials from Whitehall and key stakeholders engage with techUK members at the Council on developing issues and the Council guides techUK’s responses, be it through thought leadership pieces and campaigns or by facilitating the exchange of best practice and supporting regulatory compliance.

- Funding figure your organization provided to this trade association in the reporting year, if applicable (currency as selected in C0.4) (optional)
 <Not Applicable>

- Describe the aim of your organization’s funding
 <Not Applicable>

- Have you evaluated whether your organization’s engagement with this trade association is aligned with the goals of the Paris Agreement?
 Yes, we have evaluated, and it is aligned

Trade association
Other, please specify (The Climate Group/RE100/EV100)

Is your organization’s position on climate change consistent with theirs?
Consistent

Has your organization influenced, or is your organization attempting to influence their position?
We publicly promote their current position

State the trade association’s position on climate change, explain where your organization’s position differs, and how you are attempting to influence their position (if applicable)
The Climate Group’s mission is, “to drive climate action. Fast.” with the goal of a world of net zero carbon emissions by 2050, with greater prosperity for all.

Funding figure your organization provided to this trade association in the reporting year, if applicable (currency as selected in C0.4) (optional)

Describe the aim of your organization’s funding
<Not Applicable>

Have you evaluated whether your organization’s engagement with this trade association is aligned with the goals of the Paris Agreement?
Yes, we have evaluated, and it is aligned

Trade association
Other, please specify (GSMA)

Is your organization’s position on climate change consistent with theirs?
Consistent

Has your organization influenced, or is your organization attempting to influence their position?
We publicly promote their current position

State the trade association’s position on climate change, explain where your organization’s position differs, and how you are attempting to influence their position (if applicable)
The GSM Association is an industry organisation that represents the interests of mobile network operators worldwide. More than 750 mobile operators are full GSMA members and a further 400 companies in the broader mobile ecosystem are associate members. GSMA’s Climate Action Taskforce, works together in the following ways:
• Promotes leadership on climate action to move the industry towards net zero carbon emissions by 2050
• Agrees climate policy and advocacy engagement to gain support from governments for the net zero transition
• Shares best practice on climate action so operators support each other to raise their ambition
• Creates thought leadership and research on how mobile technologies support climate mitigation and adaptation.

Funding figure your organization provided to this trade association in the reporting year, if applicable (currency as selected in C0.4) (optional)

Describe the aim of your organization’s funding
<Not Applicable>

Have you evaluated whether your organization’s engagement with this trade association is aligned with the goals of the Paris Agreement?
Yes, we have evaluated, and it is aligned

Trade association
Other, please specify (The Aldersgate Group)

Is your organization’s position on climate change consistent with theirs?
Consistent

Has your organization influenced, or is your organization attempting to influence their position?
We publicly promote their current position

State the trade association’s position on climate change, explain where your organization’s position differs, and how you are attempting to influence their position (if applicable)
The Aldersgate Group is a politically impartial, multi-stakeholder alliance championing a competitive and environmentally sustainable economy. Through targeted political engagement, evidence gathering and policy development, they advocate the business case for decarbonising the UK economy, improving resource efficiency and investing in the natural environment.

Funding figure your organization provided to this trade association in the reporting year, if applicable (currency as selected in C0.4) (optional)

Describe the aim of your organization’s funding
<Not Applicable>

Have you evaluated whether your organization’s engagement with this trade association is aligned with the goals of the Paris Agreement?
Yes, we have evaluated, and it is aligned

C12.4
C15. Biodiversity

C15.1

(C15.1) Is there board-level oversight and/or executive management-level responsibility for biodiversity-related issues within your organization?

<table>
<thead>
<tr>
<th>Board-level oversight and/or executive management-level responsibility for biodiversity-related issues</th>
<th>Description of oversight and objectives relating to biodiversity</th>
<th>Scope of board-level oversight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes, executive management-level responsibility</td>
<td>We use our environmental management system to help us manage negative biodiversity impacts and we monitor wildlife-related incidents or risks at our sites. Our internal natural environment policy captures our long-term vision to enhance biodiversity at our sites across the UK. The EMS is overseen by Environmental Management Governance Group (EMGG); it is comprised of the Chief Technology Officer (Executive Committee member), MD dynamic infrastructure, CFO- technology, director of digital impact and sustainability, principal lawyer- environment, global EMS manager, senior manager- environment compliance, among others. The group is chaired by the ExCo sponsor for environmental risk, BT's chief technology officer; it has a formal line of reporting to the chief executive and ExCo, and issues may be escalated to the Board as required. Going forward, the EMGG will be replaced by the Group Environment Board in FY23. Examples of activities undertaken by BT in FY22: In FY22, following consultation with the RSPB, we took action to encourage the nesting of globally threatened Kittiwakes at one of our sites. This included installing a local community information board. Informed by our discussions with RSPB, we published internal guidance on ways to bird-proof BT buildings without causing injury to birds, such as using sloping sills above doors and important infrastructure. In partnership with the BBC, EE lent its 5G network to power the Green Planet Augmented Reality Experience in February and March 2022. Members of the public were able to use their phones to discover the world of plants, including learning why they are so vital for the future of our planet.</td>
<td><Not Applicable></td>
</tr>
</tbody>
</table>
C15.2 Has your organization made a public commitment and/or endorsed any initiatives related to biodiversity?

<table>
<thead>
<tr>
<th>Row</th>
<th>Indicate whether your organization made a public commitment or endorsed any initiatives related to biodiversity</th>
<th>Biodiversity-related public commitments</th>
<th>Initiatives endorsed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes, we have made public commitments and publicly endorsed initiatives related to biodiversity</td>
<td>Other, please specify (BT is a signatory to the Terra Carta, it’s aims and goals are found at sustainable-markets.org/terra-carta/)</td>
<td>Other, please specify (BT is a signatory to the Terra Carta, part of HRH The Prince of Wales’s Sustainable Markets Initiative (SMI))</td>
</tr>
</tbody>
</table>

C15.3

C15.3 Does your organization assess the impact of its value chain on biodiversity?

<table>
<thead>
<tr>
<th>Does your organization assess the impact of its value chain on biodiversity?</th>
<th>Portfolio</th>
</tr>
</thead>
<tbody>
<tr>
<td>No, and we do not plan to assess biodiversity-related impacts within the next two years</td>
<td><Not Applicable></td>
</tr>
</tbody>
</table>

C15.4

C15.4 What actions has your organization taken in the reporting year to progress your biodiversity-related commitments?

<table>
<thead>
<tr>
<th>Have you taken any actions in the reporting period to progress your biodiversity-related commitments?</th>
<th>Type of action taken to progress biodiversity-related commitments</th>
</tr>
</thead>
</table>
| Yes, we are taking actions to progress our biodiversity-related commitments | Species management
Education & awareness |

C15.5

C15.5 Does your organization use biodiversity indicators to monitor performance across its activities?

<table>
<thead>
<tr>
<th>Does your organization use indicators to monitor biodiversity performance?</th>
<th>Indicators used to monitor biodiversity performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Please select</td>
</tr>
</tbody>
</table>

C15.6

C15.6 Have you published information about your organization’s response to biodiversity-related issues for this reporting year in places other than in your CDP response? If so, please attach the publication(s).

<table>
<thead>
<tr>
<th>Report type</th>
<th>Content elements</th>
<th>Attach the document and indicate where in the document the relevant biodiversity information is located</th>
</tr>
</thead>
</table>
| In voluntary sustainability report or other voluntary communications | Impacts on biodiversity | Page 7
ESG_Axlandum.pdf |

C16. Signoff

C-FI

C-FI Use this field to provide any additional information or context that you feel is relevant to your organization’s response. Please note that this field is optional and is not scored.

C16.1

C16.1 Provide details for the person that has signed off (approved) your CDP climate change response.

<table>
<thead>
<tr>
<th>Job title</th>
<th>Corresponding job category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chief Executive Officer</td>
<td>Chief Executive Officer (CEO)</td>
</tr>
</tbody>
</table>

SC. Supply chain module
BT are committed to net zero for our business by the end of March 2031 – and for our supply chain and customer emissions by the end of March 2041. We’ve already made good progress towards our 1.5°C science-based target, approved by the Science Based Targets initiative, and continue to work on initiatives to drive year on year reductions across scope 1, 2, & 3 emissions.

Our networks and tech have a big part to play in tackling climate change and we’ve committed to help customers avoid 60 million tonnes of CO2e by the end of March 2030. We are proud to support our customers in reaching their own Net Zero goals.

SC0.1

What is your company’s annual revenue for the stated reporting period?

<table>
<thead>
<tr>
<th>Row 1</th>
<th>Annual Revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20850000000</td>
</tr>
</tbody>
</table>

SC1.1

Allocate your emissions to your customers listed below according to the goods or services you have sold them in this reporting period.

- **Requesting member**: Accenture
- **Scope of emissions**: Scope 1
- **Allocation level**: Company wide
- **Allocation level detail**: <Not Applicable>
- **Emissions in metric tonnes of CO2e**: 17
- **Uncertainty (±%)**: 2
- **Major sources of emissions**: Oil combustion for electricity generation, gas and oil combustion for heating, refrigeration gases (HFCs and SF6 only), fuel combustion for commercial and company car fleet.
- **Verified**: Yes
- **Allocation method**: Allocation based on the market value of products purchased
- **Market value or quantity of goods/services supplied to the requesting member**: 1963412
- **Unit for market value or quantity of goods/services supplied**: Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.
Emissions in metric tonnes of CO2e	0.015
Uncertainty (±%)	2
Major sources of emissions	Purchased electricity, heating, cooling, or steam for our own consumption.
Verified	Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
1963412

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with specific sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers' carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member	Accenture
Scope of emissions	Scope 3
Allocation level	Company wide
Allocation level detail	<Not Applicable>

Emissions in metric tonnes of CO2e	289.51
Uncertainty (±%)	10
Major sources of emissions	Our Scope 3 emissions constitute 94% of our end-to-end net carbon footprint; three scope 3 categories - category 1 (purchased goods and services) and category 11 (use of sold products) - contribute 68% and 25%, respectively.
Verified	Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
1963412

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with specific sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers' carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member	Amdocs Ltd
Scope of emissions	Scope 1
Allocation level	Company wide
Allocation level detail	<Not Applicable>

| **Emissions in metric tonnes of CO2e** | 0.48 |
| **Uncertainty (±%)** | CDP |
Major sources of emissions
Oil combustion for electricity generation, gas and oil combustion for heating, refrigeration gases (HFCs and SF6 only), fuel combustion for commercial and company car fleet.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
55015

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
Amdocs Ltd

Scope of emissions
Scope 2

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
55015

Uncertainty (±%)
2

Major sources of emissions
Purchased electricity, heating, cooling, or steam for our own consumption.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
0.0004

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
Amdocs Ltd

Scope of emissions
Scope 3

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
8.11

Uncertainty (±%)
10

Major sources of emissions
Our Scope 3 emissions constitute 94% of our end-to-end net carbon footprint; three scope 3 categories - category 1 (purchased goods and services) and category 11 (use
of sold products) - contribute 68% and 25%, respectively.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
55015

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
AstraZeneca

Scope of emissions
Scope 1

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
11.39

Uncertainty (±%)
2

Major sources of emissions
Oil combustion for electricity generation, gas and oil combustion for heating, refrigeration gases (HFCs and SF6 only), fuel combustion for commercial and company car fleet.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
1313363

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
AstraZeneca

Scope of emissions
Scope 2

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
0.01

Uncertainty (±%)
2

Major sources of emissions
Purchased electricity, heating, cooling, or steam for our own consumption.

Verified
Yes
Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
1313363

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
AstraZeneca

Scope of emissions
Scope 3

Allocation level
Please select

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
193.66

Uncertainty (±%)
10

Major sources of emissions
Our Scope 3 emissions constitute 94% of our end-to-end net carbon footprint; three scope 3 categories - category 1 (purchased goods and services) and category 11 (use of sold products) - contribute 68% and 25%, respectively.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
1313363

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
AT&T Inc.

Scope of emissions
Scope 1

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
331.59

Uncertainty (±%)
2

Major sources of emissions
Oil combustion for electricity generation, gas and oil combustion for heating, refrigeration gases (HFCs and SF6 only), fuel combustion for commercial and company car fleet.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased
<table>
<thead>
<tr>
<th>Requesting member</th>
<th>AT&T Inc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope of emissions</td>
<td>Scope 2</td>
</tr>
<tr>
<td>Allocation level</td>
<td>Company wide</td>
</tr>
<tr>
<td>Allocation level detail</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Emissions in metric tonnes of CO2e</td>
<td>0.284</td>
</tr>
<tr>
<td>Uncertainty (±%)</td>
<td>2</td>
</tr>
<tr>
<td>Major sources of emissions</td>
<td>Purchased electricity, heating, cooling, or steam for our own consumption.</td>
</tr>
<tr>
<td>Verified</td>
<td>Yes</td>
</tr>
<tr>
<td>Allocation method</td>
<td>Allocation based on the market value of products purchased</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Market value or quantity of goods/services supplied to the requesting member</th>
<th>38252215</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit for market value or quantity of goods/services supplied</td>
<td>Currency</td>
</tr>
</tbody>
</table>

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

<table>
<thead>
<tr>
<th>Requesting member</th>
<th>AT&T Inc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope of emissions</td>
<td>Scope 3</td>
</tr>
<tr>
<td>Allocation level</td>
<td>Company wide</td>
</tr>
<tr>
<td>Allocation level detail</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Emissions in metric tonnes of CO2e</td>
<td>5640.42</td>
</tr>
<tr>
<td>Uncertainty (±%)</td>
<td>10</td>
</tr>
<tr>
<td>Major sources of emissions</td>
<td>Our Scope 3 emissions constitute 94% of our end-to-end net carbon footprint; three scope 3 categories - category 1 (purchased goods and services) and category 11 (use of sold products) - contribute 68% and 25%, respectively.</td>
</tr>
<tr>
<td>Verified</td>
<td>Yes</td>
</tr>
<tr>
<td>Allocation method</td>
<td>Allocation based on the market value of products purchased</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Market value or quantity of goods/services supplied to the requesting member</th>
<th>38252215</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit for market value or quantity of goods/services supplied</td>
<td>Currency</td>
</tr>
</tbody>
</table>

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.
Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers' carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
Bank of America

Scope of emissions
Scope 1

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
88.59

Uncertainty (±%)
2

Major sources of emissions
Oil combustion for electricity generation, gas and oil combustion for heating, refrigeration gases (HFCs and SF6 only), fuel combustion for commercial and company car fleet.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
10219559

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers' carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
Bank of America

Scope of emissions
Scope 2

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
0.076

Uncertainty (±%)
2

Major sources of emissions
Purchased electricity, heating, cooling, or steam for our own consumption.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
10219559

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an...
environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
Bank of America

Scope of emissions
Scope 3

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
1506.91

Uncertainty (±%)
10

Major sources of emissions
Our Scope 3 emissions constitute 94% of our end-to-end net carbon footprint; three scope 3 categories - category 1 (purchased goods and services) and category 11 (use of sold products) - contribute 68% and 25%, respectively.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
10219559

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
Barclays

Scope of emissions
Scope 1

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
133.49

Uncertainty (±%)
2

Major sources of emissions
Oil combustion for electricity generation, gas and oil combustion for heating, refrigeration gases (HFCs and SF6 only), fuel combustion for commercial and company car fleet.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
15398756

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/BT Group revenue and applied that ratio to our scope 3 emissions.
reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

<table>
<thead>
<tr>
<th>Requesting member</th>
<th>Barclays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope of emissions</td>
<td>Scope 2</td>
</tr>
<tr>
<td>Allocation level</td>
<td>Company wide</td>
</tr>
<tr>
<td>Allocation level detail</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Emissions in metric tonnes of CO2e</td>
<td>0.114</td>
</tr>
<tr>
<td>Uncertainty (±%)</td>
<td>2</td>
</tr>
<tr>
<td>Major sources of emissions</td>
<td>Purchased electricity, heating, cooling, or steam for our own consumption.</td>
</tr>
<tr>
<td>Verified</td>
<td>Yes</td>
</tr>
<tr>
<td>Allocation method</td>
<td>Allocation based on the market value of products purchased</td>
</tr>
<tr>
<td>Market value or quantity of goods/services supplied to the requesting member</td>
<td>15398756</td>
</tr>
<tr>
<td>Unit for market value or quantity of goods/services supplied</td>
<td>Currency</td>
</tr>
</tbody>
</table>

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

<table>
<thead>
<tr>
<th>Requesting member</th>
<th>Barclays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope of emissions</td>
<td>Scope 3</td>
</tr>
<tr>
<td>Allocation level</td>
<td>Company wide</td>
</tr>
<tr>
<td>Allocation level detail</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Emissions in metric tonnes of CO2e</td>
<td>2270.6</td>
</tr>
<tr>
<td>Uncertainty (±%)</td>
<td>10</td>
</tr>
<tr>
<td>Major sources of emissions</td>
<td>Our Scope 3 emissions constitute 94% of our end-to-end net carbon footprint; three scope 3 categories - category 1 (purchased goods and services) and category 11 (use of sold products) - contribute 68% and 25%, respectively.</td>
</tr>
<tr>
<td>Verified</td>
<td>Yes</td>
</tr>
<tr>
<td>Allocation method</td>
<td>Allocation based on the market value of products purchased</td>
</tr>
<tr>
<td>Market value or quantity of goods/services supplied to the requesting member</td>
<td>15398756</td>
</tr>
<tr>
<td>Unit for market value or quantity of goods/services supplied</td>
<td>Currency</td>
</tr>
</tbody>
</table>

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.
Requesting member
Bristol-Myers Squibb

Scope of emissions
Scope 1

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
672

Uncertainty (±%)
2

Major sources of emissions
Oil combustion for electricity generation, gas and oil combustion for heating, refrigeration gases (HFCs and SF6 only), fuel combustion for commercial and company car fleet.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
77521406

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
Bristol-Myers Squibb

Scope of emissions
Scope 2

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
0.576

Uncertainty (±%)
2

Major sources of emissions
Purchased electricity, heating, cooling, or steam for our own consumption.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.
Scope 3
Allocation level
Company wide
Allocation level detail
<Not Applicable>
Emissions in metric tonnes of CO2e
11430.8
Uncertainty (±%) 10
Major sources of emissions
Our Scope 3 emissions constitute 94% of our end-to-end net carbon footprint; three scope 3 categories - category 1 (purchased goods and services) and category 11 (use of sold products) - contribute 68% and 25%, respectively.
Verified
Yes
Allocation method
Allocation based on the market value of products purchased
Market value or quantity of goods/services supplied to the requesting member
77521406
Unit for market value or quantity of goods/services supplied
Currency
Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers' carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
British Broadcasting Corporation
Scope of emissions
Scope 1
Allocation level
Company wide
Allocation level detail
<Not Applicable>
Emissions in metric tonnes of CO2e
16.71
Uncertainty (±%) 2
Major sources of emissions
Oil combustion for electricity generation, gas and oil combustion for heating, refrigeration gases (HFCs and SF6 only), fuel combustion for commercial and company car fleet.
Verified
Yes
Allocation method
Allocation based on the market value of products purchased
Market value or quantity of goods/services supplied to the requesting member
1927439
Unit for market value or quantity of goods/services supplied
Currency
Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers' carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
Cellnex Telecom SA
Scope of emissions
Scope 1
Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
78.98

Uncertainty (±%)
2

Major sources of emissions
Oil combustion for electricity generation, gas and oil combustion for heating, refrigeration gases (HFCs and SF6 only), fuel combustion for commercial and company car fleet.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
9111137

Unit for market value or quantity of goods/services supplied

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers' carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
Cellnex Telecom SA

Scope of emissions
Scope 2

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
0.068

Uncertainty (±%)
2

Major sources of emissions
Purchased electricity, heating, cooling, or steam for our own consumption.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
9111137

Unit for market value or quantity of goods/services supplied

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers' carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
Cellnex Telecom SA

Scope of emissions
Scope 3

Allocation level
Please select

Allocation level detail
<Not Applicable>
Emissions in metric tonnes of CO2e
1343.47

Uncertainty (±%)
10

Major sources of emissions
Our Scope 3 emissions constitute 94% of our end-to-end net carbon footprint; three scope 3 categories - category 1 (purchased goods and services) and category 11 (use of sold products) - contribute 68% and 25%, respectively.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
9111137

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
Cisco Systems, Inc.

Scope of emissions
Scope 1

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
11.65

Uncertainty (±%)
2

Major sources of emissions
Oil combustion for electricity generation, gas and oil combustion for heating, refrigeration gases (HFCs and SF6 only), fuel combustion for commercial and company car fleet.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
1323527

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
Cisco Systems, Inc.

Scope of emissions
Scope 2

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
0.01
Uncertainty (±%)
2

Major sources of emissions
Purchased electricity, heating, cooling, or steam for our own consumption.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
1323527

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers' carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
Cisco Systems, Inc.

Scope of emissions
Scope 3

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
198.24

Uncertainty (±%)
10

Major sources of emissions
Our Scope 3 emissions constitute 94% of our end-to-end net carbon footprint; three scope 3 categories - category 1 (purchased goods and services) and category 11 (use of sold products) - contribute 68% and 25%, respectively.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
1323527

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers' carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
Citrix Systems

Scope of emissions
Scope 1

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
0.93

Uncertainty (±%)
2

Major sources of emissions
Oil combustion for electricity generation, gas and oil combustion for heating, refrigeration gases (HFCs and SF6 only), fuel combustion for commercial and company car fleet.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
107437

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
Citrix Systems

Scope of emissions
Scope 2

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
0.001

Uncertainty (±%)
2

Major sources of emissions
Purchased electricity, heating, cooling, or steam for our own consumption.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
107437

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
Citrix Systems

Scope of emissions
Scope 3

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
15.84

Uncertainty (±%)
10

Major sources of emissions
Our Scope 3 emissions constitute 94% of our end-to-end net carbon footprint; three scope 3 categories - category 1 (purchased goods and services) and category 11 (use of sold products) - contribute 68% and 25%, respectively.

Verified
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process-based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process-based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
Deloitte Touche Tohmatsu Limited

Scope of emissions
Scope 3

Allocation level
g Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
1077.3

Uncertainty (±%)
10

Major sources of emissions
Our Scope 3 emissions constitute 94% of our end-to-end net carbon footprint; three scope 3 categories - category 1 (purchased goods and services) and category 11 (use of sold products) - contribute 68% and 25%, respectively.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
7306070

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process-based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
Deutsche Telekom AG

Scope of emissions
Scope 1

Allocation level
g Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
70.28

Uncertainty (±%)
2

Major sources of emissions
Oil combustion for electricity generation, gas and oil combustion for heating, refrigeration gases (HFCs and SF6 only), fuel combustion for commercial and company car fleet.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
8107468
Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
Deutsche Telekom AG

Scope of emissions
Scope 2

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
0.06

Uncertainty (±%)
2

Major sources of emissions
Purchased electricity, heating, cooling, or steam for our own consumption.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
8107468

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
Deutsche Telekom AG

Scope of emissions
Scope 3

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
1195.47

Uncertainty (±%)
10

Major sources of emissions
Our Scope 3 emissions constitute 94% of our end-to-end net carbon footprint; three scope 3 categories - category 1 (purchased goods and services) and category 11 (use of sold products) - contribute 68% and 25%, respectively.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
8107468

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers' carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

<table>
<thead>
<tr>
<th>Requesting member</th>
<th>Eaton Corporation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope of emissions</td>
<td>Scope 1</td>
</tr>
<tr>
<td>Allocation level</td>
<td>Company wide</td>
</tr>
<tr>
<td>Allocation level detail</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Emissions in metric tonnes of CO2e</td>
<td>6.37</td>
</tr>
<tr>
<td>Uncertainty (±%)</td>
<td>2</td>
</tr>
<tr>
<td>Major sources of emissions</td>
<td>Oil combustion for electricity generation, gas and oil combustion for heating, refrigeration gases (HFCs and SF6 only), fuel combustion for commercial and company car fleet.</td>
</tr>
<tr>
<td>Verified</td>
<td>Yes</td>
</tr>
<tr>
<td>Allocation method</td>
<td>Allocation based on the market value of products purchased</td>
</tr>
<tr>
<td>Market value or quantity of goods/services supplied to the requesting member</td>
<td>734998</td>
</tr>
<tr>
<td>Unit for market value or quantity of goods/services supplied</td>
<td>Currency</td>
</tr>
</tbody>
</table>

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers' carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

<table>
<thead>
<tr>
<th>Requesting member</th>
<th>Eaton Corporation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope of emissions</td>
<td>Scope 2</td>
</tr>
<tr>
<td>Allocation level</td>
<td>Company wide</td>
</tr>
<tr>
<td>Allocation level detail</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Emissions in metric tonnes of CO2e</td>
<td>0.005</td>
</tr>
<tr>
<td>Uncertainty (±%)</td>
<td>2</td>
</tr>
<tr>
<td>Major sources of emissions</td>
<td>Purchased electricity, heating, cooling, or steam for our own consumption.</td>
</tr>
<tr>
<td>Verified</td>
<td>Yes</td>
</tr>
<tr>
<td>Allocation method</td>
<td>Allocation based on the market value of products purchased</td>
</tr>
<tr>
<td>Market value or quantity of goods/services supplied to the requesting member</td>
<td>734998</td>
</tr>
<tr>
<td>Unit for market value or quantity of goods/services supplied</td>
<td>Currency</td>
</tr>
</tbody>
</table>

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers' carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.
reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
Eaton Corporation

Scope of emissions
Scope 3

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
108.38

Uncertainty (±%)
10

Major sources of emissions
Our Scope 3 emissions constitute 94% of our end-to-end net carbon footprint; three scope 3 categories - category 1 (purchased goods and services) and category 11 (use of sold products) - contribute 68% and 25%, respectively.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
734998

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
Experian Group

Scope of emissions
Scope 1

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
18.78

Uncertainty (±%)
2

Major sources of emissions
Oil combustion for electricity generation, gas and oil combustion for heating, refrigeration gases (HFCs and SF6 only), fuel combustion for commercial and company car fleet.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
2166397

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.
Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
Experian Group

Scope of emissions
Scope 3

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
319.44

Uncertainty (±%)
10

Major sources of emissions
Our Scope 3 emissions constitute 94% of our end-to-end net carbon footprint; three scope 3 categories - category 1 (purchased goods and services) and category 11 (use of sold products) - contribute 68% and 25%, respectively.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
2166397

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
Goldman Sachs Group Inc.
Company wide

<table>
<thead>
<tr>
<th>Allocation level detail</th>
<th><Not Applicable></th>
</tr>
</thead>
<tbody>
<tr>
<td>Emissions in metric tonnes of CO2e</td>
<td>576.14</td>
</tr>
<tr>
<td>Uncertainty (±%)</td>
<td>10</td>
</tr>
</tbody>
</table>

Major sources of emissions

Our Scope 3 emissions constitute 94% of our end-to-end net carbon footprint; three scope 3 categories - category 1 (purchased goods and services) and category 11 (use of sold products) - contribute 68% and 25%, respectively.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
3907283

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

We have used two main methodologies to calculate our value chain emissions:
1. Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity.
2. Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis.

We have further refined our model to incorporate real data on suppliers' carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
GSMA

Scope of emissions
Scope 1

Allocation level
do not apply

<table>
<thead>
<tr>
<th>Allocation level detail</th>
<th><Not Applicable></th>
</tr>
</thead>
<tbody>
<tr>
<td>Emissions in metric tonnes of CO2e</td>
<td>0</td>
</tr>
<tr>
<td>Uncertainty (±%)</td>
<td>2</td>
</tr>
</tbody>
</table>

Major sources of emissions

Oil combustion for electricity generation, gas and oil combustion for heating, refrigeration gases (HFCs and SF6 only), fuel combustion for commercial and company car fleet.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
0

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

We have used two main methodologies to calculate our value chain emissions:
1. Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity.
2. Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis.

We have further refined our model to incorporate real data on suppliers' carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
GSMA

Scope of emissions
Scope 2

Allocation level
do not apply
Emissions in metric tonnes of CO2e
0

Uncertainty (±%)
2

Major sources of emissions
Purchased electricity, heating, cooling, or steam for our own consumption.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
0

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
GSMA

Scope of emissions
Scope 3

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
0

Uncertainty (±%)
10

Major sources of emissions
Our Scope 3 emissions constitute 94% of our end-to-end net carbon footprint; three scope 3 categories - category 1 (purchased goods and services) and category 11 (use of sold products) - contribute 68% and 25%, respectively.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
0

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
HSBC Holdings plc

Scope of emissions
Scope 1

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
371.42
Uncertainty (±%) 2

Major sources of emissions
Oil combustion for electricity generation, gas and oil combustion for heating, refrigeration gases (HFCs and SF6 only), fuel combustion for commercial and company car fleet.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
42846294

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers' carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital Impact & Sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
HSBC Holdings plc

Scope of emissions
Scope 2

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
0.318

Uncertainty (±%) 2

Major sources of emissions
Purchased electricity, heating, cooling, or steam for our own consumption.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
42846294

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers' carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital Impact & Sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
HSBC Holdings plc

Scope of emissions
Scope 3

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
6317.83

Uncertainty (±%) 10

Major sources of emissions
Our Scope 3 emissions constitute 94% of our end-to-end net carbon footprint; three scope 3 categories - category 1 (purchased goods and services) and category 11 (use of sold products) - contribute 68% and 25%, respectively.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
42846294

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers' carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
Icon PLC

Scope of emissions
Scope 1

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
0.03

Uncertainty (±%)
2

Major sources of emissions
Oil combustion for electricity generation, gas and oil combustion for heating, refrigeration gases (HFCs and SF6 only), fuel combustion for commercial and company car fleet.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
3198

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers' carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
Icon PLC

Scope of emissions
Scope 2

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
0

Uncertainty (±%)
2

Major sources of emissions
Purchased electricity, heating, cooling, or steam for our own consumption.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
3198

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
Icon PLC

Scope of emissions
Scope 3

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e

0.47

Uncertainty (±%)
10

Major sources of emissions
Our Scope 3 emissions constitute 94% of our end-to-end net carbon footprint; three scope 3 categories - category 1 (purchased goods and services) and category 11 (use of sold products) - contribute 68% and 25%, respectively.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
3198

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
ITV

Scope of emissions
Scope 1

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e

0.0101

Uncertainty (±%)
2

Major sources of emissions
Oil combustion for electricity generation, gas and oil combustion for heating, refrigeration gases (HFCs and SF6 only), fuel combustion for commercial and company car fleet.

Verified
Yes

Allocation method
Requesting member
ITV

Scope of emissions
Scope 3

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
0.1712

Uncertainty (±%)
10

Major sources of emissions
Our Scope 3 emissions constitute 94% of our end-to-end net carbon footprint; three scope 3 categories - category 1 (purchased goods and services) and category 11 (use of sold products) - contribute 68% and 25%, respectively.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Requesting member
ITV

Scope of emissions
Scope 3

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
0

Uncertainty (±%)
2

Major sources of emissions
Purchased electricity, heating, cooling, or steam for our own consumption.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Requesting member
ITV

Scope of emissions
Scope 3

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
0

Uncertainty (±%)
2

Major sources of emissions
Please explain how you have identified the GHG source, including major limitations to this process and assumptions made.

We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Market value or quantity of goods/services supplied to the requesting member
1161

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue / BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
J Sainsbury Plc

Scope of emissions
Scope 1

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
3.51

Uncertainty (±%)
2

Major sources of emissions
Oil combustion for electricity generation, gas and oil combustion for heating, refrigeration gases (HFCs and SF6 only), fuel combustion for commercial and company car fleet.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
405022

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue / BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
J Sainsbury Plc

Scope of emissions
Scope 2

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
0.003

Uncertainty (±%)
2

Major sources of emissions
Purchased electricity, heating, cooling, or steam for our own consumption.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
405022

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers' carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member

Jacobs Engineering Group Inc.

Scope of emissions

Scope 1

Allocation level

Company wide

Allocation level detail

<Not Applicable>

Emissions in metric tonnes of CO2e

2.14

Uncertainty (±%)

2

Major sources of emissions

Oil combustion for electricity generation, gas and oil combustion for heating, refrigeration gases (HFCs and SF6 only), fuel combustion for commercial and company car fleet.

Verified

Yes

Allocation method

Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member

248326

Unit for market value or quantity of goods/services supplied

Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers' carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.
goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers' carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

<table>
<thead>
<tr>
<th>Requesting member</th>
<th>Jacobs Engineering Group Inc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope of emissions</td>
<td>Scope 2</td>
</tr>
<tr>
<td>Allocation level</td>
<td>Company wide</td>
</tr>
<tr>
<td>Allocation level detail</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Emissions in metric tonnes of CO2e</td>
<td>0.002</td>
</tr>
<tr>
<td>Uncertainty (±%)</td>
<td>2</td>
</tr>
<tr>
<td>Major sources of emissions</td>
<td>Purchased electricity, heating, cooling, or steam for our own consumption.</td>
</tr>
</tbody>
</table>

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
246326

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers' carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

<table>
<thead>
<tr>
<th>Requesting member</th>
<th>Jacobs Engineering Group Inc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope of emissions</td>
<td>Scope 3</td>
</tr>
<tr>
<td>Allocation level</td>
<td>Company wide</td>
</tr>
<tr>
<td>Allocation level detail</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Emissions in metric tonnes of CO2e</td>
<td>36.32</td>
</tr>
<tr>
<td>Uncertainty (±%)</td>
<td>10</td>
</tr>
<tr>
<td>Major sources of emissions</td>
<td>Our Scope 3 emissions constitute 94% of our end-to-end net carbon footprint; three scope 3 categories - category 1 (purchased goods and services) and category 11 (use of sold products) - contribute 68% and 25%, respectively.</td>
</tr>
</tbody>
</table>

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
246326

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers' carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.
Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
Jaguar Land Rover Automotive plc

Scope of emissions
Scope 1

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
2.71

Uncertainty (±%)
2

Major sources of emissions
Oil combustion for electricity generation, gas and oil combustion for heating, refrigeration gases (HFCs and SF6 only), fuel combustion for commercial and company car fleet.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
312213

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers' carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
Jaguar Land Rover Automotive plc

Scope of emissions
Scope 2

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
0.002

Uncertainty (±%)
2

Major sources of emissions
Purchased electricity, heating, cooling, or steam for our own consumption.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
312213

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers' carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.
Jaguar Land Rover Automotive plc

Scope of emissions
Scope 3

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
46.04

Uncertainty (±%)
10

Major sources of emissions
Our Scope 3 emissions constitute 94% of our end-to-end net carbon footprint; three scope 3 categories - category 1 (purchased goods and services) and category 11 (use of sold products) - contribute 68% and 25%, respectively.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
312213

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers' carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Koninklijke KPN NV (Royal KPN)

Scope of emissions
Scope 1

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
24.75

Uncertainty (±%)
2

Major sources of emissions
Oil combustion for electricity generation, gas and oil combustion for heating, refrigeration gases (HFCs and SF6 only), fuel combustion for commercial and company car fleet.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
2855608

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers' carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
Koninklijke Philips NV
Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
82.83

Uncertainty (±%)
2

Major sources of emissions
Oil combustion for electricity generation, gas and oil combustion for heating, refrigeration gases (HFCs and SF6 only), fuel combustion for commercial and company car fleet.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
9554781

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
Koninklijke Philips NV

Scope of emissions
Scope 2

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
0.071

Uncertainty (±%)
2

Major sources of emissions
Purchased electricity, heating, cooling, or steam for our own consumption.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
9554781

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
Koninklijke Philips NV

Scope of emissions
Scope 3

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
Major sources of emissions
Our Scope 3 emissions constitute 94% of our end-to-end net carbon footprint; three scope 3 categories - category 1 (purchased goods and services) and category 11 (use of sold products) - contribute 68% and 25%, respectively.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
9554781

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers' carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
KPMG UK

Scope of emissions
Scope 1

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
108.67

Uncertainty (±%)
2

Major sources of emissions
Oil combustion for electricity generation, gas and oil combustion for heating, refrigeration gases (HFCs and SF6 only), fuel combustion for commercial and company car fleet.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
12535828

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers' carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
KPMG UK

Scope of emissions
Scope 2

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
0.093

Uncertainty (±%)
Major sources of emissions
Purchased electricity, heating, cooling, or steam for our own consumption.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
12535828

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
KPMG UK

Scope of emissions
Scope 3

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
1848.45

Uncertainty (±%)
10

Major sources of emissions
Our Scope 3 emissions constitute 94% of our end-to-end net carbon footprint; three scope 3 categories - category 1 (purchased goods and services) and category 11 (use of sold products) - contribute 68% and 25%, respectively.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
12535828

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
L’Oréal

Scope of emissions
Scope 1

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
2.73

Uncertainty (±%)
2

Major sources of emissions
Oil combustion for electricity generation, gas and oil combustion for heating, refrigeration gases (HFCs and SF6 only), fuel combustion for commercial and company car
Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers' carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
L’Oréal

Scope of emissions
Scope 2

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
0.002

Uncertainty (±%)
2

Major sources of emissions
Purchased electricity, heating, cooling, or steam for our own consumption.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
315323

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers' carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
L’Oréal

Scope of emissions
Scope 3

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
46.5

Uncertainty (±%)
10

Major sources of emissions
Our Scope 3 emissions constitute 94% of our end-to-end net carbon footprint; three scope 3 categories - category 1 (purchased goods and services) and category 11 (use of sold products) - contribute 68% and 25%, respectively.

Verified
Please select
Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
315323

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
Lloyds Banking Group

Scope of emissions
Scope 1

Allocation level
company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
806.59

Uncertainty (±%)
2

Major sources of emissions
Oil combustion for electricity generation, gas and oil combustion for heating, refrigeration gases (HFCs and SF6 only), fuel combustion for commercial and company car fleet.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
93046913

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
Lloyds Banking Group

Scope of emissions
Scope 2

Allocation level
company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
0.691

Uncertainty (±%)
2

Major sources of emissions
Purchased electricity, heating, cooling, or steam for our own consumption.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
Requesting member

Lloyds Banking Group

Scope of emissions

Scope 3

Allocation level

Company wide

Allocation level detail

<Not Applicable>

Emissions in metric tonnes of CO2e

13720.09

Uncertainty (±%)

10

Major sources of emissions

Our Scope 3 emissions constitute 94% of our end-to-end net carbon footprint; three scope 3 categories - category 1 (purchased goods and services) and category 11 (use of sold products) - contribute 68% and 25%, respectively.

Verified

Yes

Allocation method

Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member

93046913

Unit for market value or quantity of goods/services supplied

Currency

Requesting member

Mastercard Incorporated

Scope of emissions

Scope 1

Allocation level

Company wide

Allocation level detail

<Not Applicable>

Emissions in metric tonnes of CO2e

166.69

Uncertainty (±%)

2

Major sources of emissions

Oil combustion for electricity generation, gas and oil combustion for heating, refrigeration gases (HFCs and SF6 only), fuel combustion for commercial and company car fleet.

Verified

Yes

Allocation method

Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member

19263290

Unit for market value or quantity of goods/services supplied

Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.
Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers' carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
Mastercard Incorporated

Scope of emissions
Scope 2

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
0.143

Uncertainty (±%) 2

Major sources of emissions
Purchased electricity, heating, cooling, or steam for our own consumption.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
19263290

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers' carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
Mastercard Incorporated

Scope of emissions
Scope 3

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
2840.44

Uncertainty (±%) 10

Major sources of emissions
Our Scope 3 emissions constitute 94% of our end-to-end net carbon footprint; three scope 3 categories - category 1 (purchased goods and services) and category 11 (use of sold products) - contribute 68% and 25%, respectively.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
19263290

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an...
environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
MetLife, Inc.

Scope of emissions
Scope 1

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
2.41

Uncertainty (±%)
2

Major sources of emissions
Oil combustion for electricity generation, gas and oil combustion for heating, refrigeration gases (HFCs and SF6 only), fuel combustion for commercial and company car fleet.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
277629

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
MetLife, Inc.

Scope of emissions
Scope 2

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
0.002

Uncertainty (±%)
2

Major sources of emissions
Purchased electricity, heating, cooling, or steam for our own consumption.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
277629

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.
To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
MetLife, Inc.

Scope of emissions
Scope 3

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
40.94

Uncertainty (±%)
10

Major sources of emissions
Our Scope 3 emissions constitute 94% of our end-to-end net carbon footprint; three scope 3 categories - category 1 (purchased goods and services) and category 11 (use of sold products) - contribute 69% and 25%, respectively.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
277629

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
Moody’s Corporation

Scope of emissions
Scope 1

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
2.72

Uncertainty (±%)
2

Major sources of emissions
Oil combustion for electricity generation, gas and oil combustion for heating, refrigeration gases (HFCs and SF6 only), fuel combustion for commercial and company car fleet.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
313744

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.
Requesting member
Moody's Corporation

Scope of emissions
Scope 2

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
0.002

Uncertainty (±%)
2

Major sources of emissions
Purchased electricity, heating, cooling, or steam for our own consumption.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
313744

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers' carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
National Grid PLC

Scope of emissions
Scope 3

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
46.26

Uncertainty (±%)
10

Major sources of emissions
Our Scope 3 emissions constitute 94% of our end-to-end net carbon footprint; three scope 3 categories - category 1 (purchased goods and services) and category 11 (use of sold products) - contribute 69% and 25%, respectively.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
313744

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers' carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.
Scope of emissions

Scope 1

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
25.41

Uncertainty (±%)
2

Major sources of emissions
Oil combustion for electricity generation, gas and oil combustion for heating, refrigeration gases (HFCs and SF6 only), fuel combustion for commercial and company car fleet.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
2931729

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach/#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member

National Grid PLC

Scope of emissions

Scope 2

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
0.022

Uncertainty (±%)
2

Major sources of emissions
Purchased electricity, heating, cooling, or steam for our own consumption.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
2931729

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach/#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member

National Grid PLC

Scope of emissions

Scope 3

Allocation level
CDP
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
432.29

Uncertainty (±%)
10

Major sources of emissions
Our Scope 3 emissions constitute 94% of our end-to-end net carbon footprint; three scope 3 categories - category 1 (purchased goods and services) and category 11 (use of sold products) - contribute 68% and 25%, respectively.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
2931729

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers' carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
NHS England and NHS Improvement

Scope of emissions
Scope 1

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
41.1

Uncertainty (±%)
2

Major sources of emissions
Oil combustion for electricity generation, gas and oil combustion for heating, refrigeration gases (HFCs and SF6 only), fuel combustion for commercial and company car fleet.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
4741017

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers' carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
NHS England and NHS Improvement

Scope of emissions
Scope 2

Allocation level
Company wide

Allocation level detail
Emissions in metric tonnes of CO2e
0.035

Uncertainty (±%)
2

Major sources of emissions
Purchased electricity, heating, cooling, or steam for our own consumption.

Verified
Please select

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
4741017

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers' carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
NHS England and NHS Improvement

Scope of emissions
Scope 3

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
699.08

Uncertainty (±%)
10

Major sources of emissions
Our Scope 3 emissions constitute 94% of our end-to-end net carbon footprint; three scope 3 categories - category 1 (purchased goods and services) and category 11 (use of sold products) - contribute 68% and 25%, respectively.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
4741017

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers' carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
Nokia Group

Scope of emissions
Scope 1

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
13.19
Uncertainty (±%)
2
Major sources of emissions
Oil combustion for electricity generation, gas and oil combustion for heating, refrigeration gases (HFCs and SF6 only), fuel combustion for commercial and company car fleet.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
1521402

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
Nokia Group

Scope of emissions
Scope 2

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
0.011

Uncertainty (±%)
2

Major sources of emissions
Purchased electricity, heating, cooling, or steam for our own consumption.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
1521402

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
Nokia Group

Scope of emissions
Scope 3

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
224.34

Uncertainty (±%)
10

Major sources of emissions
Our Scope 3 emissions constitute 94% of our end-to-end net carbon footprint; three scope 3 categories - category 1 (purchased goods and services) and category 11 (use of sold products) - contribute 68% and 25%, respectively.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
1524102

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
Novartis

Scope of emissions
Scope 1

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
379.22

Uncertainty (±%)
2

Major sources of emissions
Oil combustion for electricity generation, gas and oil combustion for heating, refrigeration gases (HFCs and SF6 only), fuel combustion for commercial and company car fleet.

Verified
Yes

Market value or quantity of goods/services supplied to the requesting member
43754563

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
Novartis

Scope of emissions
Scope 2

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
0.325

Uncertainty (±%)
2

Major sources of emissions
Purchased electricity, heating, cooling, or steam for our own consumption.

Verified
Requesting member

<table>
<thead>
<tr>
<th>Novartis</th>
</tr>
</thead>
</table>

Scope of emissions

<table>
<thead>
<tr>
<th>Scope 3</th>
</tr>
</thead>
</table>

Allocation level

<table>
<thead>
<tr>
<th>Company wide</th>
</tr>
</thead>
</table>

Allocation level detail

<table>
<thead>
<tr>
<th><Not Applicable></th>
</tr>
</thead>
</table>

Emissions in metric tonnes of CO2e

<table>
<thead>
<tr>
<th>6,451.76</th>
</tr>
</thead>
</table>

Uncertainty (±%)

<table>
<thead>
<tr>
<th>10</th>
</tr>
</thead>
</table>

Major sources of emissions

Our Scope 3 emissions constitute 94% of our end-to-end net carbon footprint; three scope 3 categories - category 1 (purchased goods and services) and category 11 (use of sold products) - contribute 68% and 25%, respectively.

Verified

<table>
<thead>
<tr>
<th>Yes</th>
</tr>
</thead>
</table>

Allocation method

Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member

<table>
<thead>
<tr>
<th>43,754,563</th>
</tr>
</thead>
</table>

Unit for market value or quantity of goods/services supplied

<table>
<thead>
<tr>
<th>Currency</th>
</tr>
</thead>
</table>

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers' carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member

<table>
<thead>
<tr>
<th>PayPal Holdings Inc</th>
</tr>
</thead>
</table>

Scope of emissions

<table>
<thead>
<tr>
<th>Scope 1</th>
</tr>
</thead>
</table>

Allocation level

<table>
<thead>
<tr>
<th>Company wide</th>
</tr>
</thead>
</table>

Allocation level detail

<table>
<thead>
<tr>
<th><Not Applicable></th>
</tr>
</thead>
</table>

Emissions in metric tonnes of CO2e

<table>
<thead>
<tr>
<th>11.43</th>
</tr>
</thead>
</table>

Uncertainty (±%)

<table>
<thead>
<tr>
<th>2</th>
</tr>
</thead>
</table>

Major sources of emissions

Oil combustion for electricity generation, gas and oil combustion for heating, refrigeration gases (HFCs and SF6 only), fuel combustion for commercial and company car fleet.

Verified

<table>
<thead>
<tr>
<th>Yes</th>
</tr>
</thead>
</table>

Allocation method

Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member

<table>
<thead>
<tr>
<th>43,754,563</th>
</tr>
</thead>
</table>

Unit for market value or quantity of goods/services supplied

<table>
<thead>
<tr>
<th>Currency</th>
</tr>
</thead>
</table>

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers' carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.
Requesting member
PayPal Holdings Inc

Scope of emissions
Scope 3

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
194.37

Uncertainty (%)
10

Major sources of emissions
Our Scope 3 emissions constitute 94% of our end-to-end net carbon footprint; three scope 3 categories - category 1 (purchased goods and services) and category 11 (use of sold products) - contribute 68% and 25%, respectively.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
1318163

Unit for market value or quantity of goods/services supplied
Currency

Requesting member
PayPal Holdings Inc

Scope of emissions
Scope 2

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
0.1

Uncertainty (%)
2

Major sources of emissions
Purchased electricity, heating, cooling, or steam for our own consumption.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
1318163

Unit for market value or quantity of goods/services supplied
Currency

Requesting member
PayPal Holdings Inc

Scope of emissions
Scope 3

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
1318163

Uncertainty (%)
10

Major sources of emissions
Purchased electricity, heating, cooling, or steam for our own consumption.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
1318163

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers' carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers' carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers' carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.
Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
Phoenix Group Holdings

Scope of emissions
Scope 1

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
110.13

Uncertainty (±%)
2

Major sources of emissions
Oil combustion for electricity generation, gas and oil combustion for heating, refrigeration gases (HFCs and SF6 only), fuel combustion for commercial and company car fleet.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
Phoenix Group Holdings

Scope of emissions
Scope 2

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
0.094

Uncertainty (±%)
2

Major sources of emissions
Purchased electricity, heating, cooling, or steam for our own consumption.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an
environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

<table>
<thead>
<tr>
<th>Requesting member</th>
<th>Phoenix Group Holdings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope of emissions</td>
<td>Scope 3</td>
</tr>
<tr>
<td>Allocation level</td>
<td>Company wide</td>
</tr>
<tr>
<td>Allocation level detail</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Emissions in metric tonnes of CO2e</td>
<td>1873.33</td>
</tr>
<tr>
<td>Uncertainty (±%)</td>
<td>10</td>
</tr>
<tr>
<td>Major sources of emissions</td>
<td>Our Scope 3 emissions constitute 94% of our end-to-end net carbon footprint; three scope 3 categories - category 1 (purchased goods and services) and category 11 (use of sold products) - contribute 68% and 25%, respectively.</td>
</tr>
<tr>
<td>Verified</td>
<td>Yes</td>
</tr>
<tr>
<td>Allocation method</td>
<td>Allocation based on the market value of products purchased</td>
</tr>
<tr>
<td>Market value or quantity of goods/services supplied to the requesting member</td>
<td>12704529</td>
</tr>
<tr>
<td>Unit for market value or quantity of goods/services supplied</td>
<td>Currency</td>
</tr>
</tbody>
</table>

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

<table>
<thead>
<tr>
<th>Requesting member</th>
<th>Robert Bosch GmbH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope of emissions</td>
<td>Scope 1</td>
</tr>
<tr>
<td>Allocation level</td>
<td>Company wide</td>
</tr>
<tr>
<td>Allocation level detail</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Emissions in metric tonnes of CO2e</td>
<td>69.07</td>
</tr>
<tr>
<td>Uncertainty (±%)</td>
<td>2</td>
</tr>
<tr>
<td>Major sources of emissions</td>
<td>Our Scope 1 emissions constitute 94% of our end-to-end net carbon footprint; three scope 1 categories - category 1 (purchased goods and services) and category 11 (use of sold products) - contribute 68% and 25%, respectively.</td>
</tr>
<tr>
<td>Verified</td>
<td>Yes</td>
</tr>
<tr>
<td>Allocation method</td>
<td>Allocation based on the market value of products purchased</td>
</tr>
<tr>
<td>Market value or quantity of goods/services supplied to the requesting member</td>
<td>7967549</td>
</tr>
<tr>
<td>Unit for market value or quantity of goods/services supplied</td>
<td>Currency</td>
</tr>
</tbody>
</table>

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.
Requesting member
Robert Bosch GmbH

Scope of emissions
Scope 3

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
0.059

Uncertainty (±%)
2

Major sources of emissions
Purchased electricity, heating, cooling, or steam for our own consumption.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
7967549

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers' carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
Robert Bosch GmbH

Scope of emissions
Scope 2

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
1174.84

Uncertainty (±%)
10

Major sources of emissions
Our Scope 3 emissions constitute 94% of our end-to-end net carbon footprint; three scope 3 categories - category 1 (purchased goods and services) and category 11 (use of sold products) - contribute 68% and 25%, respectively.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
7967549

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers' carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.
Royal London Mutual Insurance Society Limited

Scope of emissions
Scope 1

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
69.07

Uncertainty (± %)
2

Major sources of emissions
Oil combustion for electricity generation, gas and oil combustion for heating, refrigeration gases (HFCs and SF6 only), fuel combustion for commercial and company car fleet.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
540693

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers' carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
Royal London Mutual Insurance Society Limited

Scope of emissions
Scope 2

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
0.004

Uncertainty (± %)
2

Major sources of emissions
Purchased electricity, heating, cooling, or steam for our own consumption.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
540693

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers' carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
Royal London Mutual Insurance Society Limited

Scope of emissions
Scope 3
Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
79.73

Uncertainty (%)
10

Major sources of emissions
Our Scope 3 emissions constitute 94% of our end-to-end net carbon footprint; three scope 3 categories - category 1 (purchased goods and services) and category 11 (use of sold products) - contribute 68% and 25%, respectively.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
540693

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers' carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
Sky Ltd

Scope of emissions
Scope 1

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
10736.63

Uncertainty (%)
2

Major sources of emissions
Oil combustion for electricity generation, gas and oil combustion for heating, refrigeration gases (HFCs and SF6 only), fuel combustion for commercial and company car fleet.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
123851770

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers' carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
Sky Ltd

Scope of emissions
Scope 2

Allocation level
Company wide
Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
9.204

Uncertainty (±%) 2

Major sources of emissions
Purchased electricity, heating, cooling, or steam for our own consumption.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
1238561770

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
Sky Ltd

Scope of emissions
Scope 3

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
182630.17

Uncertainty (±%) 10

Major sources of emissions
Our Scope 3 emissions constitute 94% of our end-to-end net carbon footprint; three scope 3 categories - category 1 (purchased goods and services) and category 11 (use of sold products) - contribute 68% and 25%, respectively.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
1238561770

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
Snam S.P.A

Scope of emissions
Scope 1

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
Uncertainty (±%) 2

Major sources of emissions
Oil combustion for electricity generation, gas and oil combustion for heating, refrigeration gases (HFCs and SF6 only), fuel combustion for commercial and company car fleet.

Verified Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
21196302

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
Snam S.P.A

Scope of emissions
Scope 2

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
0.158

Uncertainty (±%) 2

Major sources of emissions
Purchased electricity, heating, cooling, or steam for our own consumption.

Verified Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
21196302

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
Snam S.P.A

Scope of emissions
Scope 3

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
3125.47

Uncertainty (±%) 10
Major sources of emissions

Our Scope 3 emissions constitute 94% of our end-to-end net carbon footprint; three scope 3 categories - category 1 (purchased goods and services) and category 11 (use of sold products) - contribute 68% and 25%, respectively.

Allocation method

Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member

21196302

Unit for market value or quantity of goods/services supplied

Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers' carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member

SSE

Scope of emissions

Scope 1

Allocation level

Company wide

Allocation level detail

<Not Applicable>

Emissions in metric tonnes of CO2e

254.49

Uncertainty (±%)

2

Major sources of emissions

Oil combustion for electricity generation, gas and oil combustion for heating, refrigeration gases (HFCs and SF6 only), fuel combustion for commercial and company car fleet.

Verified

Yes

Allocation method

Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member

29357641

Unit for market value or quantity of goods/services supplied

Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member

SSE

Scope of emissions

Scope 2

Allocation level

Company wide

Allocation level detail

<Not Applicable>

Emissions in metric tonnes of CO2e

0.218

Uncertainty (±%)

2

Major sources of emissions

Purchased electricity, heating, cooling, or steam for our own consumption.
Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Verifying member

SSE

Scope of emissions

Scope 3

Allocation level

Company wide

Allocation level detail

<Not Applicable>

Emissions in metric tonnes of CO2e

4328.88

Uncertainty (±%)

10

Major sources of emissions

Our Scope 3 emissions constitute 94% of our end-to-end net carbon footprint; three scope 3 categories - category 1 (purchased goods and services) and category 11 (use of sold products) - contribute 68% and 25%, respectively.
Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
5808465

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers' carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
Swisscom

Scope of emissions
Scope 2

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
0.043

Uncertainty (%)
2

Major sources of emissions
Purchased electricity, heating, cooling, or steam for our own consumption.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
5808465

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers' carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
Swisscom

Scope of emissions
Scope 3

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
856.48

Uncertainty (%)
10

Major sources of emissions
Our Scope 3 emissions constitute 94% of our end-to-end net carbon footprint; three scope 3 categories - category 1 (purchased goods and services) and category 11 (use of sold products) - contribute 68% and 25%, respectively.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
Telefónica

Scope of emissions
Scope 1

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
1591.39

Uncertainty (±%)
2

Major sources of emissions
Oil combustion for electricity generation, gas and oil combustion for heating, refrigeration gases (HFCs and SF6 only), fuel combustion for commercial and company car fleet.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
183579844

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
Telefónica

Scope of emissions
Scope 2

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
1.364

Uncertainty (±%)
2

Major sources of emissions
Purchased electricity, heating, cooling, or steam for our own consumption.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
183579844

Unit for market value or quantity of goods/services supplied
Currency
Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital Impact & Sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

<table>
<thead>
<tr>
<th>Requesting member</th>
<th>Telefónica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope of emissions</td>
<td>Scope 3</td>
</tr>
<tr>
<td>Allocation level</td>
<td>Company wide</td>
</tr>
<tr>
<td>Allocation level detail</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Emissions in metric tonnes of CO2e</td>
<td>27069.48</td>
</tr>
<tr>
<td>Uncertainty (±%)</td>
<td>10</td>
</tr>
<tr>
<td>Major sources of emissions</td>
<td>Our Scope 3 emissions constitute 94% of our end-to-end net carbon footprint; three scope 3 categories - category 1 (purchased goods and services) and category 11 (use of sold products) - contribute 68% and 25%, respectively.</td>
</tr>
<tr>
<td>Verified</td>
<td>Yes</td>
</tr>
<tr>
<td>Allocation method</td>
<td>Allocation based on the market value of products purchased</td>
</tr>
<tr>
<td>Market value or quantity of goods/services supplied to the requesting member</td>
<td>183579844</td>
</tr>
<tr>
<td>Unit for market value or quantity of goods/services supplied</td>
<td>Currency</td>
</tr>
</tbody>
</table>

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital Impact & Sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

<table>
<thead>
<tr>
<th>Requesting member</th>
<th>Telstra Corporation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope of emissions</td>
<td>Scope 1</td>
</tr>
<tr>
<td>Allocation level</td>
<td>Company wide</td>
</tr>
<tr>
<td>Allocation level detail</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Emissions in metric tonnes of CO2e</td>
<td>24.19</td>
</tr>
<tr>
<td>Uncertainty (±%)</td>
<td>2</td>
</tr>
<tr>
<td>Major sources of emissions</td>
<td>Oil combustion for electricity generation, gas and oil combustion for heating, refrigeration gases (HFCs and SF6 only), fuel combustion for commercial and company car fleet.</td>
</tr>
<tr>
<td>Verified</td>
<td>Yes</td>
</tr>
<tr>
<td>Allocation method</td>
<td>Allocation based on the market value of products purchased</td>
</tr>
<tr>
<td>Market value or quantity of goods/services supplied to the requesting member</td>
<td>2790109</td>
</tr>
<tr>
<td>Unit for market value or quantity of goods/services supplied</td>
<td>Currency</td>
</tr>
</tbody>
</table>

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an
environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers' carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

<table>
<thead>
<tr>
<th>Requesting member</th>
<th>Telstra Corporation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope of emissions</td>
<td>Scope 2</td>
</tr>
<tr>
<td>Allocation level</td>
<td>Company wide</td>
</tr>
<tr>
<td>Allocation level detail</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Emissions in metric tonnes of CO2e</td>
<td>0.021</td>
</tr>
<tr>
<td>Uncertainty (±%)</td>
<td>2</td>
</tr>
<tr>
<td>Major sources of emissions</td>
<td>Purchased electricity, heating, cooling, or steam for our own consumption.</td>
</tr>
<tr>
<td>Verified</td>
<td>Yes</td>
</tr>
<tr>
<td>Allocation method</td>
<td>Allocation based on the market value of products purchased</td>
</tr>
<tr>
<td>Market value or quantity of goods/services supplied to the requesting member</td>
<td>2790109</td>
</tr>
<tr>
<td>Unit for market value or quantity of goods/services supplied</td>
<td>Currency</td>
</tr>
<tr>
<td>Please explain how you have identified the GHG source, including major limitations to this process and assumptions made</td>
<td>We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers' carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Requesting member</th>
<th>Telstra Corporation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope of emissions</td>
<td>Scope 3</td>
</tr>
<tr>
<td>Allocation level</td>
<td>Company wide</td>
</tr>
<tr>
<td>Allocation level detail</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Emissions in metric tonnes of CO2e</td>
<td>411.41</td>
</tr>
<tr>
<td>Uncertainty (±%)</td>
<td>10</td>
</tr>
<tr>
<td>Major sources of emissions</td>
<td>Our Scope 3 emissions constitute 94% of our end-to-end net carbon footprint; three scope 3 categories - category 1 (purchased goods and services) and category 11 (use of sold products) - contribute 68% and 25%, respectively.</td>
</tr>
<tr>
<td>Verified</td>
<td>Yes</td>
</tr>
<tr>
<td>Allocation method</td>
<td>Allocation based on the market value of products purchased</td>
</tr>
<tr>
<td>Market value or quantity of goods/services supplied to the requesting member</td>
<td>2790109</td>
</tr>
<tr>
<td>Unit for market value or quantity of goods/services supplied</td>
<td>Currency</td>
</tr>
<tr>
<td>Please explain how you have identified the GHG source, including major limitations to this process and assumptions made</td>
<td>We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers' carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.</td>
</tr>
</tbody>
</table>
impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

<table>
<thead>
<tr>
<th>Requesting member</th>
<th>UBS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope of emissions</td>
<td>Scope 1</td>
</tr>
<tr>
<td>Allocation level</td>
<td>Company wide</td>
</tr>
<tr>
<td>Allocation level detail</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Emissions in metric tonnes of CO2e</td>
<td>96.9</td>
</tr>
<tr>
<td>Uncertainty (±%)</td>
<td>2</td>
</tr>
<tr>
<td>Major sources of emissions</td>
<td>Oil combustion for electricity generation, gas and oil combustion for heating, refrigeration gases (HFCs and SF6 only), fuel combustion for commercial and company car fleet.</td>
</tr>
<tr>
<td>Verified</td>
<td>Yes</td>
</tr>
<tr>
<td>Allocation method</td>
<td>Allocation based on the market value of products purchased</td>
</tr>
<tr>
<td>Market value or quantity of goods/services supplied to the requesting member</td>
<td>11178250</td>
</tr>
<tr>
<td>Unit for market value or quantity of goods/services supplied</td>
<td>Currency</td>
</tr>
</tbody>
</table>

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers' carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

<table>
<thead>
<tr>
<th>Requesting member</th>
<th>UBS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope of emissions</td>
<td>Scope 2</td>
</tr>
<tr>
<td>Allocation level</td>
<td>Company wide</td>
</tr>
<tr>
<td>Allocation level detail</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Emissions in metric tonnes of CO2e</td>
<td>0.083</td>
</tr>
<tr>
<td>Uncertainty (±%)</td>
<td>2</td>
</tr>
<tr>
<td>Major sources of emissions</td>
<td>Purchased electricity, heating, cooling, or steam for our own consumption.</td>
</tr>
<tr>
<td>Verified</td>
<td>Yes</td>
</tr>
<tr>
<td>Allocation method</td>
<td>Allocation based on the market value of products purchased</td>
</tr>
<tr>
<td>Market value or quantity of goods/services supplied to the requesting member</td>
<td>11178250</td>
</tr>
<tr>
<td>Unit for market value or quantity of goods/services supplied</td>
<td>Currency</td>
</tr>
</tbody>
</table>

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers' carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.
Requesting member
UBS

Scope of emissions
Scope 3

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
1648.27

Uncertainty (±%) 10

Major sources of emissions
Our Scope 3 emissions constitute 94% of our end-to-end net carbon footprint; three scope 3 categories - category 1 (purchased goods and services) and category 11 (use of sold products) - contribute 68% and 25%, respectively.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
11178250

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers' carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
Virgin Money UK PLC

Scope of emissions
Scope 1

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
21.55

Uncertainty (±%) 2

Major sources of emissions
Oil combustion for electricity generation, gas and oil combustion for heating, refrigeration gases (HFCs and SF6 only), fuel combustion for commercial and company car fleet.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
2485619

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers' carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
Virgin Money UK PLC
Scope of emissions
Scope 2

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
0.018

Uncertainty (±%)
2

Major sources of emissions
Purchased electricity, heating, cooling, or steam for our own consumption.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
2485619

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
Virgin Money UK PLC

Scope of emissions
Scope 3

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
366.51

Uncertainty (±%)
10

Major sources of emissions
Our Scope 3 emissions constitute 94% of our end-to-end net carbon footprint; three scope 3 categories - category 1 (purchased goods and services) and category 11 (use of sold products) - contribute 68% and 25%, respectively.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
2485619

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
Visa

Scope of emissions
Scope 1

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
174.28

Uncertainty (±%)
2

Major sources of emissions
Oil combustion for electricity generation, gas and oil combustion for heating, refrigeration gases (HFCs and SF6 only), fuel combustion for commercial and company car fleet.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
20104752

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
Visa

Scope of emissions
Scope 2

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
0.149

Uncertainty (±%)
2

Major sources of emissions
Purchased electricity, heating, cooling, or steam for our own consumption.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
20104752

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
Visa

Scope of emissions
Scope 3

Allocation level
Company wide

Allocation level detail
<Not Applicable>
Emissions in metric tonnes of CO2e
2964.51

Uncertainty (±%)
10

Major sources of emissions
Our Scope 3 emissions constitute 94% of our end-to-end net carbon footprint; three scope 3 categories - category 1 (purchased goods and services) and category 11 (use of sold products) - contribute 68% and 25%, respectively.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
20104752

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers' carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
Vodafone Group

Scope of emissions
Scope 1

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
4734.42

Uncertainty (±%)
2

Major sources of emissions
Oil combustion for electricity generation, gas and oil combustion for heating, refrigeration gases (HFCs and SF6 only), fuel combustion for commercial and company car fleet.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
546155430

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers' carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
Vodafone Group

Scope of emissions
Scope 2

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
4.059
Uncertainty (±%) 2

Major sources of emissions
Purchased electricity, heating, cooling, or steam for our own consumption.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
546155430

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers' carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
Vodafone Group

Scope of emissions
Scope 3

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
80532.48

Uncertainty (±%) 10

Major sources of emissions
Our Scope 3 emissions constitute 94% of our end-to-end net carbon footprint; three scope 3 categories - category 1 (purchased goods and services) and category 11 (use of sold products) - contribute 68% and 25%, respectively.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
546155430

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers' carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
Zurich Insurance Group

Scope of emissions
Scope 1

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
538.69

Uncertainty (±%) 2

Major sources of emissions
Oil combustion for electricity generation, gas and oil combustion for heating, refrigeration gases (HFCs and SF6 only), fuel combustion for commercial and company car fleet.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
62142953

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
Zurich Insurance Group

Scope of emissions
Scope 2

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
0.462

Uncertainty (±%)
2

Major sources of emissions
Purchased electricity, heating, cooling, or steam for our own consumption

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
62142953

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
Zurich Insurance Group

Scope of emissions
Scope 3

Allocation level
Company wide

Allocation level detail
<Not Applicable>

Emissions in metric tonnes of CO2e
9163.19

Uncertainty (±%)
10

Major sources of emissions
Our Scope 3 emissions constitute 94% of our end-to-end net carbon footprint; three scope 3 categories - category 1 (purchased goods and services) and category 11 (use of sold products) - contribute 66% and 25%, respectively.

Verified
Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers' carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

<table>
<thead>
<tr>
<th>Requesting member</th>
<th>CBRE Group, Inc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope of emissions</td>
<td></td>
</tr>
<tr>
<td>Scope 1</td>
<td></td>
</tr>
<tr>
<td>Allocation level</td>
<td>Company wide</td>
</tr>
<tr>
<td>Allocation level detail</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Emissions in metric tonnes of CO2e</td>
<td>0.01</td>
</tr>
<tr>
<td>Uncertainty (±%)</td>
<td>2</td>
</tr>
<tr>
<td>Major sources of emissions</td>
<td>Oil combustion for electricity generation, gas and oil combustion for heating, refrigeration gases (HFCs and SF6 only), fuel combustion for commercial and company car fleet.</td>
</tr>
<tr>
<td>Verified</td>
<td>Yes</td>
</tr>
<tr>
<td>Allocation method</td>
<td>Allocation based on the market value of products purchased</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Requesting member</th>
<th>CBRE Group, Inc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope of emissions</td>
<td></td>
</tr>
<tr>
<td>Scope 2</td>
<td></td>
</tr>
<tr>
<td>Allocation level</td>
<td>Company wide</td>
</tr>
<tr>
<td>Allocation level detail</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Emissions in metric tonnes of CO2e</td>
<td>0</td>
</tr>
<tr>
<td>Uncertainty (±%)</td>
<td>2</td>
</tr>
<tr>
<td>Major sources of emissions</td>
<td>Purchased electricity, heating, cooling, or steam for our own consumption</td>
</tr>
<tr>
<td>Verified</td>
<td>Yes</td>
</tr>
<tr>
<td>Allocation method</td>
<td>Allocation based on the market value of products purchased</td>
</tr>
</tbody>
</table>
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
CBRE Group, Inc.

Scope of emissions
Scope 3

Allocation level
tCompany wide

Allocation level detail
Not Applicable

Emissions in metric tonnes of CO2e
0.16

Uncertainty (±%)
10

Major sources of emissions
Our Scope 3 emissions constitute 94% of our end-to-end net carbon footprint; three scope 3 categories - category 1 (purchased goods and services) and category 11 (use of sold products) - contribute 68% and 25%, respectively.

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
1076

Unit for market value or quantity of goods/services supplied
Currency

Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
We have used two main methodologies to calculate our value chain emissions: • Spend-based method which takes procurement data and calculates the emissions within an environmentally extended economic input-output (EEIO) model to assess the emissions associated with particular sectors of financial activity. • Process-based method which uses quantity-based data to evaluate the emissions associated with specific activities, e.g. kWh of energy usage or quantity of materials purchased to manufacture goods. The resulting model is a hybrid between EEIO and process based life cycle analysis. We have further refined our model to incorporate real data on suppliers’ carbon reductions using data from CDP. A full description of the EEIO methodology is available from our Digital impact & sustainability website (https://www.bt.com/about/digital-impact-and-sustainability/our-approach#our-methodology). To allocate emissions to those customers requesting this information we have taken customer revenue/ BT Group revenue and applied that ratio to our scope 3 emissions.

Requesting member
Caixa Econômica Federal

Scope of emissions
Scope 1

Allocation level
tCompany wide

Allocation level detail
Not Applicable

Emissions in metric tonnes of CO2e
0

Uncertainty (±%)
0

Major sources of emissions
N/A

Verified
Yes

Allocation method
Allocation based on the market value of products purchased

Market value or quantity of goods/services supplied to the requesting member
0

Unit for market value or quantity of goods/services supplied
Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

BT Global divested from Latin America in 2021, as such our records show that Caixa was not a customer. We are unable to provide a footprint for the period April 2021 - March 2022.

If you believe otherwise please reach out to your account manager to discuss, and for them to contact Sarwar Khan in BT Global.

SC1.2

(SC1.2) Where published information has been used in completing SC1.1, please provide a reference(s).

SC1.3

(SC1.3) What are the challenges in allocating emissions to different customers, and what would help you to overcome these challenges?

<table>
<thead>
<tr>
<th>Allocation challenges</th>
<th>Please explain what would help you overcome these challenges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diversity of product lines makes accurately</td>
<td>We have driven innovative work to analyse the lifecycle of</td>
</tr>
<tr>
<td>accounting for each product/product line cost</td>
<td>our various products so we understand the carbon emissions</td>
</tr>
<tr>
<td>ineffective</td>
<td>of in-life use. However, much of what we sell to our</td>
</tr>
<tr>
<td>Customer base is too large and diverse to</td>
<td>customers is a service rather than a product which makes</td>
</tr>
<tr>
<td>accurately track emissions to the customer level</td>
<td>it much harder to quantify associated carbon emissions.</td>
</tr>
</tbody>
</table>

SC1.4

(SC1.4) Do you plan to develop your capabilities to allocate emissions to your customers in the future?

Yes

SC1.4a

(SC1.4a) Describe how you plan to develop your capabilities.

We currently allocate emissions to those customer’s requesting this information by taking customer revenue/ BT Group revenue and applied that ratio to our emissions. Basing our emissions tracking on spend means that it is relatively straightforward to determine customer emissions. As much of what we sell to our customers is a service rather than a product. However we are currently working on developing a networking energy & carbon dashboard for our Managed Services customers. For this base we have visibility of their networking estate & able to draw telemetry from networking devices including power use. This will be overlayed with regional specific grid carbon intensity data to provide a view of the total carbon emissions in a customer estate. Where there is a data gap best estimates will be provided through the use of data sheets. This service will be a premium add our customers who take out Managed Services from BT Global.

For customers who do not have Managed Services we are working with suppliers to provide us with CPE equipment carbon footprint data which can be digitally shared with customers via Account sign-in on Global.com as a way of building up a digital inventory.

The goal for both solutions will be to provide customers with visibility of the carbon footprint of the IT networking estate with detailed analysis on networking devices, applications & workloads that can be optimised for low carbon usage.

SC2.1

(SC2.1) Please propose any mutually beneficial climate-related projects you could collaborate on with specific CDP Supply Chain members.

<table>
<thead>
<tr>
<th>Requesting member</th>
<th>Accenture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group type of project</td>
<td>New product or service</td>
</tr>
<tr>
<td>Type of project</td>
<td>New product or service that reduces customers products / services operational emissions</td>
</tr>
<tr>
<td>Emissions targeted</td>
<td>Actions that would reduce both our own and our customers’ emissions</td>
</tr>
<tr>
<td>Estimated timeframe for carbon reductions to be realized</td>
<td>1-3 years</td>
</tr>
<tr>
<td>Estimated lifetime CO2e savings</td>
<td></td>
</tr>
<tr>
<td>Estimated payback</td>
<td></td>
</tr>
</tbody>
</table>
Please select

Details of proposal
1. Migration from legacy datacentres to a cloud first strategy/colocation services

BT have a number of products to help customers consolidate their data centre footprint and move across to a cloud first strategy helping customers improve efficiency & potentially carbon. For example our colocation services typically offer lower Power Usage Effectiveness (PUE) and are powered by 100% renewable electricity helping to reduce both scope 1 & 2 emissions.

Requesting member
Accenture

Type of project
New product or service

Emissions targeted
Actions that would reduce both our own and our customers’ emissions

Estimated timeframe for carbon reductions to be realized
1-3 years

Estimated lifetime CO2e savings

Details of proposal
2. LAN upgrade or SD/WAN rollout

As part of BT’s Managed Services capabilities, we are able to proactively monitor customer network devices for power & carbon providing recommendations to identify & prioritise replacement of carbon intensive devices as part of strategic network planning to help our customers reduce their scope 2 emissions.

Requesting member
Accenture

Type of project
New product or service

Emissions targeted
Actions that would reduce both our own and our customers’ emissions

Estimated timeframe for carbon reductions to be realized
1-3 years

Estimated lifetime CO2e savings

Details of proposal
4. Application to measure emissions for Data centre optimisation

We have co-developed an innovative AI application with Intel that looks to optimise HVAC & IT equipment such as server sleep modes in data centres to help customers reduce energy use and therefore both scope 1 & 2 emissions.

Requesting member
Accenture

Type of project
New product or service

Emissions targeted
Actions that would reduce both our own and our customers’ emissions

Estimated timeframe for carbon reductions to be realized
1-3 years

Estimated lifetime CO2e savings

Details of proposal
5. Application to measure and optimise building energy management

We have partnered with Qio to develop an AI application built on BT Edge compute to help customers optimise energy use across their facilities, machinery & buildings. The Edge compute capability enables customers to securely process data at the Edge keeping IT/OT interfaces separate whilst also providing the benefits associated with low latency.

Requesting member
Bank of America

Type of project
New product or service

Emissions targeted
Actions that would reduce both our own and our customers’ emissions

Estimated timeframe for carbon reductions to be realized
1-3 years

Estimated lifetime CO2e savings

Details of proposal
3. Application for Carbon management optimisation

The Edge compute capability enables customers to securely process data at the Edge keeping IT/OT interfaces separate whilst also providing the benefits associated with lower latency.

Requesting member
Bank of America

Type of project
New product or service

Emissions targeted
Actions that would reduce both our own and our customers’ emissions

Estimated timeframe for carbon reductions to be realized
1-3 years

Estimated lifetime CO2e savings
New product or service

Type of project
New product or service that reduces customers products / services operational emissions

Emissions targeted
Actions that would reduce both our own and our customers' emissions

Estimated timeframe for carbon reductions to be realized
1-3 years

Estimated lifetime CO2e savings

Estimated payback
Please select

Details of proposal
1. Migration from legacy datacentres to a cloud first strategy/colocation services
 BT have a number of products to help customers consolidate their data centre footprint and move across to a cloud first strategy helping customers improve efficiency & potentially carbon. For example our colocation services typically offer lower Power Usage Effectiveness (PUE) and are powered by 100% renewable electricity helping to reduce both scope 1 & 2 emissions.

2. LAN upgrade or SD/WAN rollout
 As part of BT’s Managed Services capabilities, we are able to proactively monitor customer network devices for power & carbon providing recommendations to Identify & prioritise replacement of carbon intensive devices as part of strategic network planning to help our customers reduce their scope 2 emissions.

3. Digital work applications for hybrid working e.g. Microsoft Teams or Cloud contact centre such as Genesys
 We have a wide portfolio of Digital work solutions powered by BT connectivity centred around a number of providers like Microsoft for collaboration & Genesys for cloud contact centres to help customers reduce their scope 3 emissions focused on business & employee travel.

4. Application to measure emissions for Data centre optimisation
 We have co-developed an innovative AI application with Intel that looks to optimise HVAC & IT equipment such as server sleep modes in data centres to help customers reduce energy use and therefore both scope 1 & 2 emissions.

5. Application to measure and optimise building energy management
 We have partnered with Qio to develop an AI application built on BT Edge compute to help customers optimise energy use across their facilities, machinery & buildings. The Edge compute capability enables customers to securely process data at the Edge keeping IT/OT interfaces separate whilst also providing the benefits associated with low latency.

Requesting member
Barclays

Group type of project
New product or service

Type of project
New product or service that reduces customers products / services operational emissions

Emissions targeted
Actions that would reduce both our own and our customers' emissions

Estimated timeframe for carbon reductions to be realized
1-3 years

Estimated lifetime CO2e savings

Estimated payback
Please select

Details of proposal
1. Migration from legacy datacentres to a cloud first strategy/colocation services
 BT have a number of products to help customers consolidate their data centre footprint and move across to a cloud first strategy helping customers improve efficiency & potentially carbon. For example our colocation services typically offer lower Power Usage Effectiveness (PUE) and are powered by 100% renewable electricity helping to reduce both scope 1 & 2 emissions.

2. LAN upgrade or SD/WAN rollout
 As part of BT’s Managed Services capabilities, we are able to proactively monitor customer network devices for power & carbon providing recommendations to Identify & prioritise replacement of carbon intensive devices as part of strategic network planning to help our customers reduce their scope 2 emissions.

3. Digital work applications for hybrid working e.g. Microsoft Teams or Cloud contact centre such as Genesys
 We have a wide portfolio of Digital work solutions powered by BT connectivity centred around a number of providers like Microsoft for collaboration & Genesys for cloud contact centres to help customers reduce their scope 3 emissions focused on business & employee travel.

4. Application to measure emissions for Data centre optimisation
 We have co-developed an innovative AI application with Intel that looks to optimise HVAC & IT equipment such as server sleep modes in data centres to help customers reduce energy use and therefore both scope 1 & 2 emissions.

5. Application to measure and optimise building energy management
We have partnered with Qio to develop an AI application built on BT Edge compute to help customers optimise energy use across their facilities, machinery & buildings. The Edge compute capability enables customers to securely process data at the Edge keeping IT/OT interfaces separate whilst also providing the benefits associated with low latency.

Requesting member
Bristol-Myers Squibb

Group type of project
New product or service

Type of project
New product or service that reduces customers products / services operational emissions

Emissions targeted
Actions that would reduce both our own and our customers’ emissions

Estimated timeframe for carbon reductions to be realized
3-5 years

Estimated lifetime CO2e savings

Estimated payback
Please select

Details of proposal
1. Migration from legacy datacentres to a cloud first strategy/colocation services
BT have a number of products to help customers consolidate their data centre footprint and move across to a cloud first strategy helping customers improve efficiency & potentially carbon. For example our colocation services typically offer lower Power Usage Effectiveness (PUE) and are powered by 100% renewable electricity helping to reduce both scope 1 & 2 emissions.

2. LAN upgrade or SD/WAN rollout
As part of BT’s Managed Services capabilities, we are able to proactively monitor customer network devices for power & carbon providing recommendations to Identify & prioritise replacement of carbon intensive devices as part of strategic network planning to help our customers reduce their scope 2 emissions.

3. Digital work applications for hybrid working e.g. Microsoft Teams or Cloud contact centre such as Genesys
We have a wide portfolio of Digital work solutions powered by BT connectivity centred around a number of providers like Microsoft for collaboration & Genesys for cloud contact centres to help customers reduce their scope 3 emissions focused on business & employee travel.

4. Application to measure emissions for Data centre optimisation
We have co-developed an innovative AI application with Intel that looks to optimise HVAC & IT equipment such as server sleep modes in data centres to help customers reduce energy use and therefore both scope 1 & 2 emissions.

5. Application to measure and optimise building energy management
We have partnered with Qio to develop an AI application built on BT Edge compute to help customers optimise energy use across their facilities, machinery & buildings. The Edge compute capability enables customers to securely process data at the Edge keeping IT/OT interfaces separate whilst also providing the benefits associated with low latency.
We have a wide portfolio of Digital work solutions powered by BT connectivity centred around a number of providers like Microsoft for collaboration & Genesys for cloud contact centres to help customers reduce their scope 3 emissions focused on business & employee travel.

4. Application to measure emissions for Data centre optimisation

We have co-developed an innovative AI application with Intel that looks to optimise HVAC & IT equipment such as server sleep modes in data centres to help customers reduce energy use and therefore both scope 1 & 2 emissions.

5. Application to measure and optimise building energy management

We have partnered with Qio to develop an AI application built on BT Edge compute to help customers optimise energy use across their facilities, machinery & buildings. The Edge compute capability enables customers to securely process data at the Edge keeping IT/OT interfaces separate whilst also providing the benefits associated with low latency.

Requesting member
Jaguar Land Rover Automotive plc

Group type of project
New product or service

Type of project
New product or service that reduces customers products / services operational emissions

Emissions targeted
Actions that would reduce both our own and our customers' emissions

Estimated timeframe for carbon reductions to be realized
1-3 years

Estimated lifetime CO2e savings

Estimated payback
Please select

Details of proposal
1. Migration from legacy datacentres to a cloud first strategy/colocation services

BT have a number of products to help customers consolidate their data centre footprint and move across to a cloud first strategy helping customers improve efficiency & potentially carbon. For example our colocation services typically offer lower Power Usage Effectiveness (PUE) and are powered by 100% renewable electricity helping to reduce both scope 1 & 2 emissions.

2. LAN upgrade or SD/WAN rollout

As part of BT’s Managed Services capabilities, we are able to proactively monitor customer network devices for power & carbon providing recommendations to identify & prioritise replacement of carbon intensive devices as part of strategic network planning to help our customers reduce their scope 2 emissions.

3. Digital work applications for hybrid working e.g. Microsoft Teams or Cloud contact centre such as Genesys

We have a wide portfolio of Digital work solutions powered by BT connectivity centred around a number of providers like Microsoft for collaboration & Genesys for cloud contact centres to help customers reduce their scope 3 emissions focused on business & employee travel.

4. Application to measure emissions for Data centre optimisation

We have co-developed an innovative AI application with Intel that looks to optimise HVAC & IT equipment such as server sleep modes in data centres to help customers reduce energy use and therefore both scope 1 & 2 emissions.

5. Application to measure and optimise building energy management

We have partnered with Qio to develop an AI application built on BT Edge compute to help customers optimise energy use across their facilities, machinery & buildings. The Edge compute capability enables customers to securely process data at the Edge keeping IT/OT interfaces separate whilst also providing the benefits associated with low latency.

Requesting member
Koninklijke Philips NV

Group type of project
New product or service

Type of project
New product or service that reduces customers products / services operational emissions

Emissions targeted
Actions that would reduce both our own and our customers' emissions

Estimated timeframe for carbon reductions to be realized
1-3 years

Estimated lifetime CO2e savings

Estimated payback
Please select

Details of proposal
1. Migration from legacy datacentres to a cloud first strategy/colocation services

BT have a number of products to help customers consolidate their data centre footprint and move across to a cloud first strategy helping customers improve efficiency & potentially carbon. For example our colocation services typically offer lower Power Usage Effectiveness (PUE) and are powered by 100% renewable electricity helping to...
reduce both scope 1 & 2 emissions.

2. LAN upgrade or SD/WAN rollout
As part of BT’s Managed Services capabilities, we are able to proactively monitor customer network devices for power & carbon providing recommendations to identify & prioritise replacement of carbon intensive devices as part of strategic network planning to help our customers reduce their scope 2 emissions.

3. Digital work applications for hybrid working e.g. Microsoft Teams or Cloud contact centre such as Genesys
We have a wide portfolio of Digital work solutions powered by BT connectivity centred around a number of providers like Microsoft for collaboration & Genesys for cloud contact centres to help customers reduce their scope 3 emissions focused on business & employee travel.

4. Application to measure emissions for Data centre optimisation
We have co-developed an innovative AI application with Intel that looks to optimise HVAC & IT equipment such as server sleep modes in data centres to help customers reduce energy use and therefore both scope 1 & 2 emissions.

5. Application to measure and optimise building energy management
We have partnered with Qio to develop an AI application built on BT Edge compute to help customers optimise energy use across their facilities, machinery & buildings. The Edge compute capability enables customers to securely process data at the Edge keeping IT/OT interfaces separate whilst also providing the benefits associated with low latency.
Estimated payback
Please select

Details of proposal
1. Migration from legacy datacentres to a cloud first strategy/colocation services
 BT have a number of products to help customers consolidate their data centre footprint and move across to a cloud first strategy helping customers improve efficiency & potentially carbon. For example our colocation services typically offer lower Power Usage Effectiveness (PUE) and are powered by 100% renewable electricity helping to reduce both scope 1 & 2 emissions.
2. LAN upgrade or SD/WAN rollout
 As part of BT’s Managed Services capabilities, we are able to proactively monitor customer network devices for power & carbon providing recommendations to Identify & prioritise replacement of carbon intensive devices as part of strategic network planning to help our customers reduce their scope 2 emissions.
3. Digital work applications for hybrid working e.g. Microsoft Teams or Cloud contact centre such as Genesys
 We have a wide portfolio of Digital work solutions powered by BT connectivity centred around a number of providers like Microsoft for collaboration & Genesys for cloud contact centres to help customers reduce their scope 3 emissions focused on business & employee travel.
4. Application to measure emissions for Data centre optimisation
 We have co-developed an innovative AI application with Intel that looks to optimise HVAC & IT equipment such as server sleep modes in data centres to help customers reduce energy use and therefore both scope 1 & 2 emissions.
5. Application to measure and optimise building energy management
 We have partnered with Qio to develop an AI application built on BT Edge compute to help customers optimise energy use across their facilities, machinery & buildings. The Edge compute capability enables customers to securely process data at the Edge keeping IT/OT interfaces separate whilst also providing the benefits associated with low latency.

Requesting member
Robert Bosch GmbH

Group type of project
New product or service

Type of project
New product or service that reduces customers products / services operational emissions

Emissions targeted
Actions that would reduce both our own and our customers’ emissions

Estimated timeframe for carbon reductions to be realized
1-3 years

Estimated lifetime CO2e savings

Estimated payback
Please select

Details of proposal
1. Migration from legacy datacentres to a cloud first strategy/colocation services
 BT have a number of products to help customers consolidate their data centre footprint and move across to a cloud first strategy helping customers improve efficiency & potentially carbon. For example our colocation services typically offer lower Power Usage Effectiveness (PUE) and are powered by 100% renewable electricity helping to reduce both scope 1 & 2 emissions.
2. LAN upgrade or SD/WAN rollout
 As part of BT’s Managed Services capabilities, we are able to proactively monitor customer network devices for power & carbon providing recommendations to Identify & prioritise replacement of carbon intensive devices as part of strategic network planning to help our customers reduce their scope 2 emissions.
3. Digital work applications for hybrid working e.g. Microsoft Teams or Cloud contact centre such as Genesys
 We have a wide portfolio of Digital work solutions powered by BT connectivity centred around a number of providers like Microsoft for collaboration & Genesys for cloud contact centres to help customers reduce their scope 3 emissions focused on business & employee travel.
4. Application to measure emissions for Data centre optimisation
 We have co-developed an innovative AI application with Intel that looks to optimise HVAC & IT equipment such as server sleep modes in data centres to help customers reduce energy use and therefore both scope 1 & 2 emissions.
5. Application to measure and optimise building energy management
 We have partnered with Qio to develop an AI application built on BT Edge compute to help customers optimise energy use across their facilities, machinery & buildings. The Edge compute capability enables customers to securely process data at the Edge keeping IT/OT interfaces separate whilst also providing the benefits associated with low latency.
Emissions targeted
Please select

Estimated timeframe for carbon reductions to be realized
1-3 years

Estimated lifetime CO2e savings

Estimated payback
Please select

Details of proposal
1. Migration from legacy datacentres to a cloud first strategy/colocation services
BT have a number of products to help customers consolidate their data centre footprint and move across to a cloud first strategy helping customers improve efficiency & potentially carbon. For example our colocation services typically offer lower Power Usage Effectiveness (PUE) and are powered by 100% renewable electricity helping to reduce both scope 1 & 2 emissions.

2. LAN upgrade or SD/WAN rollout
As part of BT’s Managed Services capabilities, we are able to proactively monitor customer network devices for power & carbon providing recommendations to identify & prioritise replacement of carbon intensive devices as part of strategic network planning to help our customers reduce their scope 2 emissions.

3. Digital work applications for hybrid working e.g. Microsoft Teams or Cloud contact centre such as Genesys
We have a wide portfolio of Digital work solutions powered by BT connectivity centred around a number of providers like Microsoft for collaboration & Genesys for cloud contact centres to help customers reduce their scope 3 emissions focused on business & employee travel.

4. Application to measure emissions for Data centre optimisation
We have co-developed an innovative AI application with Intel that looks to optimise HVAC & IT equipment such as server sleep modes in data centres to help customers reduce energy use and therefore both scope 1 & 2 emissions.

5. Application to measure and optimise building energy management
We have partnered with Qio to develop an AI application built on BT Edge compute to help customers optimise energy use across their facilities, machinery & buildings. The Edge compute capability enables customers to securely process data at the Edge keeping IT/OT interfaces separate whilst also providing the benefits associated with low latency.

Requesting member
Visa

Group type of project
New product or service

Type of project
New product or service that reduces customers products / services operational emissions

Emissions targeted
Actions that would reduce both our own and our customers’ emissions

Estimated timeframe for carbon reductions to be realized
1-3 years

Estimated lifetime CO2e savings

Estimated payback
Please select

Details of proposal
1. Migration from legacy datacentres to a cloud first strategy/colocation services
BT have a number of products to help customers consolidate their data centre footprint and move across to a cloud first strategy helping customers improve efficiency & potentially carbon. For example our colocation services typically offer lower Power Usage Effectiveness (PUE) and are powered by 100% renewable electricity helping to reduce both scope 1 & 2 emissions.

2. LAN upgrade or SD/WAN rollout
As part of BT’s Managed Services capabilities, we are able to proactively monitor customer network devices for power & carbon providing recommendations to identify & prioritise replacement of carbon intensive devices as part of strategic network planning to help our customers reduce their scope 2 emissions.

3. Digital work applications for hybrid working e.g. Microsoft Teams or Cloud contact centre such as Genesys
We have a wide portfolio of Digital work solutions powered by BT connectivity centred around a number of providers like Microsoft for collaboration & Genesys for cloud contact centres to help customers reduce their scope 3 emissions focused on business & employee travel.

4. Application to measure emissions for Data centre optimisation
We have co-developed an innovative AI application with Intel that looks to optimise HVAC & IT equipment such as server sleep modes in data centres to help customers reduce energy use and therefore both scope 1 & 2 emissions.

5. Application to measure and optimise building energy management
We have partnered with Qio to develop an AI application built on BT Edge compute to help customers optimise energy use across their facilities, machinery & buildings. The Edge compute capability enables customers to securely process data at the Edge keeping IT/OT interfaces separate whilst also providing the benefits associated with low latency.

Requesting member
Nokia Group

Group type of project
New product or service

Type of project
New product or service that reduces customers products/services operational emissions

Emissions targeted
Actions that would reduce both our own and our customers' emissions

Estimated timeframe for carbon reductions to be realized
1-3 years

Estimated lifetime CO2e savings

Estimated payback
Please select

Details of proposal
1. Migration from legacy datacentres to a cloud first strategy/colocation services
BT have a number of products to help customers consolidate their data centre footprint and move across to a cloud first strategy helping customers improve efficiency & potentially carbon. For example our colocation services typically offer lower Power Usage Effectiveness (PUE) and are powered by 100% renewable electricity helping to reduce both scope 1 & 2 emissions.

2. LAN upgrade or SD/WAN rollout
As part of BT’s Managed Services capabilities, we are able to proactively monitor customer network devices for power & carbon providing recommendations to Identify & prioritise replacement of carbon intensive devices as part of strategic network planning to help our customers reduce their scope 2 emissions.

3. Digital work applications for hybrid working e.g. Microsoft Teams or Cloud contact centre such as Genesys
We have a wide portfolio of Digital work solutions powered by BT connectivity centred around a number of providers like Microsoft for collaboration & Genesys for cloud contact centres to help customers reduce their scope 3 emissions focused on business & employee travel.

4. Application to measure emissions for Data centre optimisation
We have co-developed an innovative AI application with Intel that looks to optimise HVAC & IT equipment such as server sleep modes in data centres to help customers reduce energy use and therefore both scope 1 & 2 emissions.

5. Application to measure and optimise building energy management
We have partnered with Qio to develop an AI application built on BT Edge compute to help customers optimise energy use across their facilities, machinery & buildings. The Edge compute capability enables customers to securely process data at the Edge keeping IT/OT interfaces separate whilst also providing the benefits associated with low latency.

SC2.2

(SC2.2) Have requests or initiatives by CDP Supply Chain members prompted your organization to take organizational-level emissions reduction initiatives?
No

SC4.1

(SC4.1) Are you providing product level data for your organization's goods or services?
No, I am not providing data

Submit your response

In which language are you submitting your response?
English

Please confirm how your response should be handled by CDP

<table>
<thead>
<tr>
<th>Response permission</th>
<th>I understand that my response will be shared with all requesting stakeholders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Please confirm below
I have read and accept the applicable Terms